

Valutazione della qualità dell'aria della regione Lazio 2024

ARPA Lazio

Attività di gestione delle reti, analisi e valutazione dei dati:

Dipartimento stato dell'ambiente

Servizio qualità dell'aria e monitoraggio degli agenti fisici

Unità centro regionale della qualità dell'aria

Unità aria e agenti fisici area nord

Unità aria e agenti fisici di Roma

Unità aria e agenti fisici area sud

Attività analitiche:

Dipartimento prevenzione e laboratorio integrato Servizio coordinamento delle attività di laboratorio Unità laboratorio chimico di Frosinone

Immagine di copertina: distribuzione spaziale della concentrazione media annua di PM₁₀ nel 2024.

Si ringrazia l'Istituto di Scienze dell'Atmosfera e del Clima del CNR (sede di Roma) per la collaborazione alla redazione del capitolo 3 (Analisi meteorologica).

Elaborazione: 18 giugno 2025

Revisione del 26.06.2025

Indice

1.		Premessa	6
2.		Zonizzazione del territorio laziale	8
3.		Analisi meteorologica	11
	3.1	La rete micro-meteorologica dell'ARPA Lazio	11
	3.2	Intensità del vento	13
	3.3	Precipitazioni	18
	3.4	Temperatura	20
	3.5	Valori estremi anno 2024 e conclusioni meteorologiche	22
4.		Rete di monitoraggio regionale di qualità dell'aria	24
5.	,	Standard di qualità dell'aria	30
	5.1	Dati della rete automatica di misura - PM ₁₀ , PM _{2.5} , NO ₂ , C ₆ H ₆ , SO ₂ , CO, O ₃	32
	5.1.1	Agglomerato di Roma	32
	5.1.2		
	5.1.3	rr	
	5.1.4		
	5.2 5.2.1	Analisi su filtro: Benzo(a)pirene e MetalliIPA	
	5.2.1		
		Caratterizzazione del PM	
		Analisi delle serie storiche degli inquinanti	
	5.4.1	Agglomerato di Roma	
	5.4.2		
	5.4.3	Zona Litoranea	47
6.		Sistema modellistico per la valutazione della qualità dell'aria	49
	6.1	La catena modellistica	49
	6.2	Dominio di calcolo	50
	6.3	Trattamento delle emissioni	51
	6.4	Downscaling e pre-processing meteorologico	52
		Modello fotochimico per la dispersione degli inquinanti in atmosfera	
		Integrazione delle misure nel sistema modellistico	
7.	,	Valutazione della qualità dell'aria del 2024	
	7.1	Distribuzione spaziale della concentrazione di PM ₁₀	56
		Distribuzione spaziale della concentrazione di PM _{2.5}	
	7.3	Distribuzione spaziale della concentrazione di NO ₂	58
		Distribuzione spaziale della concentrazione di O_3	
		Distribuzione spaziale della concentrazione di C ₆ H ₆	
		Caratterizzazione comunale dello stato della qualità dell'aria	
	7.6.1	Agglomerato di Roma	
	7.6.2	Zona Valle del Sacco	
	7.6.3	Zona Appenninica	
	7.6.4		
8.	•	Conclusioni	76

Indice delle figure

Figura 2.1 - Zone del territorio regionale del Lazio per tutti gli inquinanti a esclusione dell'ozono	9
FIGURA 2.2 - ZONE DEL TERRITORIO REGIONALE DEL LAZIO PER L'OZONO	10
FIGURA 3.1 - STRUTTURA OROGRAFICA DEL TERRITORIO LAZIALE.	11
FIGURA 3.2 - LOCALIZZAZIONE DELLE STAZIONI DELLA RETE MICRO-METEOROLOGICA	13
FIGURA 3.3 - ROSE DEI VENTI 2024 NELLE STAZIONI DELLA RMR.	16
FIGURA 3.4 - ROSA DEI VENTI DI FIUMICINO (16242 – LIRF) ANNO 2024.	
FIGURA 3.5 - ROSA DEI VENTI DI FIUMICINO (16242 – LIRF) ANNO 2023.	
FIGURA 3.6 - ROSA DEI VENTI DI FIUMICINO (16242 – LIRF) SUDDIVISA PER MESE, ANNO 2024	
FIGURA 3.7 - MAPPA ARSIAL PRECIPITAZIONI 2024.	
Figura 3.8 – Confronto precipitazioni 2024-2021 (* il dato relativo alla stazione AL006 Frosinone non i	
RAPPRESENTATIVO DELL'ANNO PER UN GUSTO AL PLUVIOMETRO)	
FIGURA 3.9 – MAPPE MENSILI TEMPERATURA ARSIAL.	
FIGURA 3.10 — CONFRONTO TEMPERATURA 2024-2021.	
FIGURA 3.11 — CONFRONTO 2024-2023 DELL'ANDAMENTO DELLA TEMPERATURA MEDIA PER LA STAZIONE AL001 TO	
Vergata	21
FIGURA 3.12 — ANDAMENTO TEMPERATURA MEDIA 2013-2024 DELLE STAZIONI RMM E ARSIAL.	22
FIGURA 3.13 - ANOMALIE DI PRECIPITAZIONE E DI TEMPERATURA TRA IL 2008 E IL 2024	
FIGURA 4.1 - LOCALIZZAZIONE DELLE STAZIONI DELLA RETE DI MISURA REGIONALE DEL LAZIO NEL 2024,	
FIGURA 4.2 - STAZIONI DELL'AGGLOMERATO DI ROMA.	
FIGURA 4.3 - STAZIONI DI MISURA NELLA VALLE DEL SACCO.	
FIGURA 4.4 - STAZIONI DELLA RETE DI MISURA NEL COMPRENSORIO DI CIVITAVECCHIA.	
FIGURA 5.1 - NUMERO DI SUPERAMENTI DEL VALORE LIMITE GIORNALIERO DI P M_{10} NELLE STAZIONI DI MONITORAGG	
DELL'AGGLOMERATO DI ROMA, RELATIVI AL PERIODO 2020-2024. IN ROSSO È EVIDENZIATO IL LIMITE DEI 35 GI	
DI SUPERAMENTO DELLA SOGLIA DI $50\mu\text{G/M}^3$	45
FIGURA 5.2 – CONCENTRAZIONE MEDIA ANNUA DI NO_2 MISURATA NELLE STAZIONI DELL'AGGLOMERATO DI ROMA	
COMPRESE NEL GRA, RELATIVA AL PERIODO 2020-2024. IN ROSSO È EVIDENZIATO IL VALORE LIMITE PER LA	
PROTEZIONE DELLA SALUTE UMANA, PARI A $40\mu\text{G/M}^3$	46
FIGURA 5.3 - NUMERO DI SUPERAMENTI DI 120 μ G/m³ PER L'O ₃ (MEDIATO SU 3 ANNI) REGISTRATI NELLE STAZIONI	
DELL'AGGLOMERATO DI ROMA. IN ROSSO È EVIDENZIATO IL LIMITE DEI 25 SUPERAMENTI.	
FIGURA 5.4 - NUMERO DI SUPERAMENTI DEL V ALORE LIMITE GIORNALIERO DI P M_{10} NELLE STAZIONI DI MONITORAGG	
DELLA ZONA VALLE DEL SACCO, RELATIVI AL PERIODO 2020-2024. IN ROSSO È EVIDENZIATO IL LIMITE DEI 35	
GIORNI DI SUPERAMENTO DELLA SOGLIA DI $50 \mu\text{G/M}^3$. *: DAL $01/01/23$ LA CENTRALINA ÂNAGNI È STATA	
sostituita con Anagni San Francesco, tuttavia è stata inclusa nel grafico ai fini della discussi	
E PER GARANTIRE COMPLETEZZA.	
FIGURA 5.5 - NUMERO DI SUPERAMENTI DI $120 \mu\text{G/m}^3$ per l' O_3 (MEDIATO SU 3 ANNI) REGISTRATI NELLE STAZIONI DEI	
ZONA LITORANEA, ÎN ROSSO È EVIDENZIATO IL LIMITE DEI 25 SUPERAMENTI	48
FIGURA 5.6 - AOT40 - O ₃ (MEDIATO SU 5 ANNI) RELATIVO ALLE STAZIONI DELLA ZONA LITORANEA. IN ROSSO È EVIDENZIATO IL VALORE OBIETTIVO PER LA PROTEZIONE DELLA VEGETAZIONE DI 18000 μ G/ M^3 *H	40
FIGURA 6.1 - SCHEMA DEL SISTEMA MODELLISTICO.	
FIGURA 6.2 – A) EMISSIONI TOTALI DI NOX (MG), B) EMISSIONI TOTALI DI PM_{10} (MG), C) EMISSIONI TOTALI DI $PM_{2.5}$ (MG)	
FIGURA 7.1 - DISTRIBUZIONE SPAZIALE DELLA MEDIA ANNUA DI PM ₁₀ NEL 2024	
FIGURA 7.2 - DISTRIBUZIONE SPAZIALE DEL NUMERO DI SUPERAMENTI DI $50 \mu G/M^3$ DI PM_{10} NEL 2024	
FIGURA 7.3 - DISTRIBUZIONE SPAZIALE DELLA MEDIA ANNUA DI PM _{2.5} NEL 2024.	
FIGURA 7.4 - DISTRIBUZIONE SPAZIALE DELLA MEDIA ANNUA DI NO2 NEL 2024.	
FIGURA 7.5 - DISTRIBUZIONE SPAZIALE DEL NUMERO DI SUPERAMENTI DI 120 μ G/ M^3 (MAX DELLA MEDIA DI 8 ORE) DI NEL 2024.	
NEL 2024. Figura 7.6 - Distribuzione spaziale della media annua di benzene nel 2024.	
TTGUKA 7.0 - DINTKIBUZIUNE MAZIALE DELLA MEDIA ANNUA DI BENZENE NEL 2024.	רס

Indice delle tabelle

Tabella 2.1 - Zonizzazione del territorio regionale per tutti gli inquinanti a esclusione dell'ozono	8
Tabella 2.2 - Zonizzazione del territorio regionale per l'ozono	9
Tabella 3.1 - Localizzazione delle stazioni della rete micro-meteorologica	12
Tabella 3.2 - Velocità medie dei venti (m/s) e calme degli ultimi 3 anni, e medie 2012-2023 (%)	16
Tabella 3.3 - Velocità media dei venti 2024 (m/s) e calme	17
Tabella 3.4 – Valori estremi anno 2024 stazioni ARSIAL.	. 22
Tabella 4.1 - Localizzazione e dotazione strumentale delle stazioni dell'Agglomerato di Roma	27
Tabella <mark>4.2 - L</mark> ocalizzazione e dotazione strumentale delle stazioni della Zona Valle del Sacco	28
Tabella 4.3 - Localizzazione e dotazione strumentale delle stazioni della Zona Appenninica	28
Tabella 4.4 - Localizzazione e dotazione strumentale delle stazioni della Zona Litoranea	. 29
Tabella 5.1 – Standard normativi previsti dal D.lgs. n. 155/2010.	30
Tabella 5.2 - Quadro riassuntivo dei superamenti riscontrati dal monitoraggio da rete fissa nel Lazio	
NEL 2024	31
TABELLA 5.3 - STANDARD DI LEGGE DEL 2024 PER LE STAZIONI LOCALIZZATE ALL'INTERNO DELL'AGGLOMERATO DI	
Roma.	
Tabella 5.4 - Standard di legge del 2024 per le stazioni localizzate all'interno della Zona Valle dei	
SACCO	
Tabella 5.5 - Standard di legge del 2024 per le stazioni localizzate all'Interno della Zona Appennini	
TABELLA 5.6 - STANDARD DI LEGGE DEL 2024 PER LE STAZIONI LOCALIZZATE ALL'INTERNO DELLA ZONA LITORANEA	
TABELLA 5.7 - CONCENTRAZIONE MEDIA ANNUA DI BENZO(A)PIRENE NEL 2024.	
TABELLA 5.8 - CONCENTRAZIONE MEDIA ANNUA DEL 2024 DEI METALLI.	
Tabella 5.9 - Statistiche descrittive dei composti analizzati nei campioni di P $M_{ m 10}$ raccolti presso le q uat	
CENTRALINE OGGETTO DI APPROFONDIMENTO	
TABELLA 6.1 - CARATTERISTICHE SPAZIALI DEL DOMINIO DI CALCOLO.	
Tabella 6.2 - Campagne monitoraggio 2024 utilizzate per la valutazione della qualità dell'aria	
Tabella 7.1 - Descrizione dei parametri,	
Tabella 7.2 - Caratterizzazione della qualità dell'aria dei comuni dell'Agglomerato di Roma	
Tabella 7.3 - Caratterizzazione della qualità dell'aria dei comuni della Valle del Sacco	
Tabella 7.4 – Caratterizzazione della qualità dell'aria dei comuni della Zona Appenninica	
Tabella 7.5 - Caratterizzazione della qualità dell'aria dei comuni nella Zona Litoranea	
TABELLA 8.1 - SINTESI DELLA VALUTAZIONE DELLA QUALITÀ DELL'ARIA DEL 2024	77
Tabella 8.2 - Numero dei comuni in superamento dal 2020 al 2024 e relative aree di superamento (Km^2) e	
POPOLAZIONE ESPOSTA	78

1. Premessa

La Direttiva Europea 2008/50/CE raccoglie e aggiorna l'insieme delle Direttive Europee (Dir. 1996/62/CE, Dir. 1999/30/CE, Dir. 2000/69/CE, Dir. 2002/3/CE, Dir. 2004/107/CE) che, fino al 2008, costituivano il quadro legislativo di riferimento in materia di inquinamento atmosferico. I contenuti e la filosofia della Direttiva 2008/50/CE sono confluiti, a livello nazionale, nel D.lgs. n. 155/2010 che ha permesso di superare la frammentazione normativa esistente in Italia abrogando una serie di decreti (D.lgs. 251/1999, D.M. 60/2002, D.lgs. 183/2004, D.lgs. 152/2007, D.M. 203/2002) che fino al 2010 rappresentavano il punto di riferimento per il controllo della qualità dell'aria sul territorio nazionale. Attualmente, la Direttiva 2008/50/CE e il D.lgs. n. 155/2010 disciplinano il controllo, la gestione e la valutazione della qualità dell'aria a livello comunitario, regionale e nazionale.

Con la Direttiva 2008/50/CE e, di riflesso, con la sua attuazione sul territorio nazionale tramite il D.lgs. n. 155/2010, il punto di riferimento logico cambia profondamente. In primo luogo, la qualità dell'aria, e cioè l'insieme delle concentrazioni al suolo di una serie di sostanze inquinanti di nota tossicità (biossido di zolfo, SO₂; biossido di azoto, NO₂; ossidi di azoto, NO₃; monossido di carbonio, CO; benzene; particolato atmosferico, PM₁₀ e PM_{2.5}; ozono, O₃; metalli; idrocarburi policiclici aromatici, IPA) non è più vista in *un'ottica puntuale*, ma in *un'ottica spaziale*: il riferimento è il territorio e, di fatto, ciò che si deve conoscere è la distribuzione spaziale e temporale della concentrazione di tali inquinanti. Dato che, allo stato attuale della tecnologia, non esiste un apparato in grado di realizzare misure spaziali di questo tipo, la normativa prescrive che tali campi vengano <u>valutati</u>, cioè si deve pervenire alla loro stima nel modo più realistico possibile.

Nella norma vengono indicati gli strumenti necessari per il controllo e la gestione della qualità dell'aria che sono:

- ✓ <u>la Rete regionale di monitoraggio della qualità dell'aria</u>: costituita dalle stazioni di monitoraggio dislocate sul territorio per la misura della concentrazione delle sostanze inquinanti. Tale apparato è utilizzato sia per le misure in continuo della concentrazione di NO_x, SO₂, CO, PM₁₀, PM_{2.5}, O₃, sia per la determinazione della concentrazione di IPA e metalli su filtri di particolato atmosferico, per definizione non automatizzabile poiché richiede l'analisi chimica in laboratorio;
- ✓ <u>le Misure indicative</u>: condotte tramite laboratori mobili dotati degli stessi analizzatori installati presso le stazioni della rete fissa di monitoraggio. Tali misure vengono effettuate per esplorare porzioni di territorio più o meno distanti dai punti fissi di misura, con lo scopo di aumentare e migliorare la conoscenza dello stato della qualità dell'aria sul territorio regionale. La differenza sostanziale tra le misure della rete di monitoraggio fissa e le misure indicative è la continuità temporale. Nel primo caso la copertura temporale del monitoraggio è continua e ininterrotta (salvo problemi strumentali), nel secondo caso è inevitabilmente legata alla durata della campagna di misura che, in ogni caso, deve coprire almeno il 14% di un anno civile;
- ✓ <u>i Metodi di stima oggettiva</u>: derivanti dall'applicazione di metodi statistici di stima oggettiva con l'obiettivo di stimare, laddove non sia presente una misura, la concentrazione degli inquinanti. Tali metodi costituiscono il primo strumento di spazializzazione previsto dalla norma e devono comunque utilizzare le misure puntuali, sia fisse che indicative, come riferimento;
- Le Simulazioni modellistiche: il quarto, e più importante, strumento previsto per la valutazione della qualità dell'aria è rappresentato dai modelli numerici di trasporto e dispersione degli inquinanti in aria che, negli ultimi anni, hanno raggiunto un livello di potenziamento tale da poter essere impiegati nel monitoraggio della qualità dell'aria. Ogni modello di questo tipo, a differenza di un metodo statistico di stima oggettiva, a rigore richiede la conoscenza preventiva delle principali variabili meteorologiche (il campo di vento che trasporta gli inquinanti e il livello di turbolenza dell'atmosfera che li disperde), e del tasso di emissione dei singoli inquinanti dalle sorgenti presenti al suolo e produce come risultato il campo di concentrazione di tali sostanze congruente con le informazioni note. Notoriamente i modelli numerici di dispersione degli

inquinanti non richiedono la conoscenza della concentrazione dei vari inquinanti rilevata strumentalmente sul territorio, resa disponibile dalla rete fissa e dalle misure indicative. Parrebbe, quindi, che l'impiego dei modelli sia inevitabilmente un metodo alternativo alle misure in campo per giungere alla valutazione della qualità dell'aria, e questo aspetto rappresentava proprio il principale punto debole dello strumento modellistico e, per contro, anche un punto di forza in sede di stima degli scenari di risanamento o delle valutazioni di impatto ambientale. Quando i modelli vengono impiegati per il monitoraggio della qualità dell'aria, è inevitabile che ci debba essere un'interazione biunivoca con le misure, attraverso un meccanismo noto come assimilazione, inserito nella struttura originaria dei modelli. Il punto di partenza logico è la constatazione incontrovertibile che le informazioni in input al modello (soprattutto quelle relative alle emissioni delle sostanze inquinanti dalle varie sorgenti distribuite sul territorio) siano caratterizzate da un errore intrinseco (come del resto è incontrovertibile il fatto che anche le misure siano affette da un errore, spesso non trascurabile). L'assimilazione, in breve, è un processo intrinseco al modello, che consente allo stesso di correggere al meglio gli errori del proprio input, e quindi dei campi spaziali e temporali che esso produce, sulla base delle misure rilevate dal sistema di monitoraggio. In questo modo alla notevole capacità interpretativa del modello (che per il tipo di inquinanti cui si è interessati non può essere che un modello Euleriano fotochimico) si unisce un'elevata realisticità quantitativa garantita dalle misure disponibili. La Direttiva 2008/50/CE indica chiaramente che l'uso dei modelli sia lo strumento determinante all'acquisizione di una valutazione realistica dello stato di qualità dell'aria, intesa come conoscenza della distribuzione nello spazio e nel tempo degli inquinanti di interesse, valorizzando al massimo ogni tipo di misura, ciascuno col proprio grado di precisione e di affidabilità.

Gli strumenti necessari per il controllo e la gestione della qualità dell'aria appena descritti sono, per loro natura, molto diversi ed è necessario tenere in considerazione che ognuno di essi non possa e non debba essere considerato come alternativo agli altri. Effettivamente, il conseguimento di una corretta integrazione di tali strumenti per la valutazione della qualità dell'aria equivale a utilizzare e valorizzare appieno l'insieme delle informazioni che quotidianamente vengono prodotte in materia di qualità dell'aria sul territorio regionale.

Nell'eventualità in cui nel calcolo degli standard legislativi le misure da rete fissa e quelle del modello restituiscano informazioni non equivalenti rispetto ai limiti normativi, in sede di valutazione della qualità dell'aria vengono sempre considerati i valori peggiori in accordo con il principio di precauzione.

Come previsto dal D.lgs. n. 155/2010, la valutazione della qualità dell'aria è l'elemento propedeutico all'attuazione delle politiche di intervento e, eventualmente, delle azioni di risanamento che devono essere intraprese dagli Enti competenti.

Secondo il succitato decreto, le singole Autorità Regionali sono tenute a effettuare annualmente la valutazione della qualità dell'aria sui territori di propria competenza, nel rispetto dei requisiti tecnici contenuti nella norma. I risultati della valutazione vengono inviati al Ministero dell'Ambiente e della Sicurezza Energetica (MASE) che aggiorna la Commissione Europea con un resoconto sull'attuazione dei Piani e programmi utili a conseguire il rispetto dei parametri normativi di riferimento per i diversi inquinanti in ogni regione.

In attuazione dei nuovi criteri introdotti del D.lgs. n. 155/2010, la Regione Lazio ha concluso la procedura di zonizzazione del territorio regionale e successiva classificazione, approvate con Deliberazione della Giunta Regionale (D.G.R.) n. 217/2012 e aggiornate in seguito con D.G.R. n. 536/2017, D.G.R. n. 305/2021 e D.G.R. n. 119/2022. Nello specifico, nel corso del 2021 la Regione Lazio con la D.G.R. n. 305 del 28 maggio 2021 ha approvato il riesame della zonizzazione e classificazione del territorio e, con la successiva Delibera n.119 del 15 marzo 2022, ha aggiornato i codici e i nomi delle zone.

Il primo progetto di adeguamento della rete di monitoraggio della qualità dell'aria a seguito della legge quadro, ha avuto l'approvazione da parte dell'allora Ministero dell'Ambiente e della Tutela del Territorio e del Mare (MATTM) nel gennaio 2014. A seguito dell'ultimo aggiornamento di zonizzazione e classificazione, è stato approvato un nuovo programma di valutazione della qualità dell'aria del Lazio in

cui viene rimodulata anche la configurazione della rete di misura fissa (D.G.R. n. 1124 del 30 novembre 2022).

Una volta individuate le zone più critiche del territorio regionale, i risultati delle simulazioni modellistiche devono essere utilizzati per individuare le aree, all'interno di tali zone, nelle quali si verifica il superamento dei limiti imposti dalla norma stessa con l'obiettivo di attuare capillarmente sul territorio regionale le politiche di intervento e le azioni di mitigazione predisposte dagli enti competenti.

Annualmente, la Regione Lazio, con il supporto dell'ARPA Lazio, provvede a effettuare la valutazione della qualità dell'aria nel Lazio utilizzando il sistema modellistico a supporto dei dati di monitoraggio dell'anno precedente e, in base al risultato, aggiorna, ove necessario, la pianificazione delle azioni di tutela della qualità dell'aria nelle zone in cui si registrano i superamenti dei parametri normativi.

La Regione Lazio, con la Deliberazione del Consiglio Regionale (D.C.R.) n. 8 del 5 ottobre 2022 (pubblicata sul BURL n. 88 del 25/10/2022), ha aggiornato il Piano di risanamento della qualità dell'aria (PRQA). Il PRQA, redatto ai sensi degli articoli 9 e 10 del D.lgs. n.155/2010 e ss.mm.ii., rappresenta lo strumento attraverso cui le autorità competenti individuano le misure atte a garantire il rispetto degli obiettivi di qualità dell'aria tesi a evitare, prevenire o ridurre gli effetti nocivi dell'inquinamento atmosferico sulla salute umana e sull'ambiente.

Il presente documento riporta la valutazione annuale, eseguita secondo la classificazione in zone del territorio regionale. Nei paragrafi che seguono viene illustrata una sintesi della zonizzazione e della classificazione del territorio, la configurazione attuale della rete di monitoraggio regionale, un riepilogo dei monitoraggi da rete fissa del 2024, i risultati della valutazione modellistica e, infine, la disamina dei risultati ottenuti dalla valutazione per ogni inquinante per zona e per comune.

È necessario evidenziare che il quadro normativo relativo alla qualità dell'aria è in fase di evoluzione. La proposta di revisione della Direttiva 2008/50/CE in materia di qualità dell'aria è stata avanzata nel 2022 e ha portato all'elaborazione di una nuova Direttiva (2024/2881) entrata in vigore a dicembre 2024. La revisione della Direttiva prevede importanti modifiche che non si limitano alla riduzione dei valori limite di concentrazione degli inquinanti e all'introduzione di nuovi standard di qualità dell'aria, ma che riguardano anche il rafforzamento delle disposizioni in materia di applicazione delle tecniche di modellizzazione.

2. Zonizzazione del territorio laziale

La Valutazione della qualità dell'aria presentata in questo documento si basa sulla zonizzazione del territorio laziale, di seguito riassunta, ridefinita con la Deliberazione della Giunta Regionale n.305 del 28 maggio 2021 e, successivamente, perfezionata con D.G.R. n.119 del 15 marzo 2022, contenente l'aggiornamento della denominazione e dei codici delle zone.

Come mostrato nelle Tabelle 2.1 e 2.2, in occasione dell'aggiornamento della zonizzazione è stato inserito il riferimento "2021" dopo i nomi delle zone, per indicare l'anno di riesame e per distinguere le denominazioni aggiornate, da quelle della zonizzazione precedente.

Tabella 2.1 - Zonizzazione del territorio regionale per tutti gli inquinanti a esclusione dell'ozono.

ZONA	Codice	Comuni	Area (km²)	Popolazione
Appenninica 2021	IT1216	197	7026	541.130
Valle del Sacco 2021	IT1217	86	2976	627.438
Litoranea 2021	IT1218	69	4958	1.196.305
Agglomerato di Roma 2021	IT1219	26	2272	3.514.210

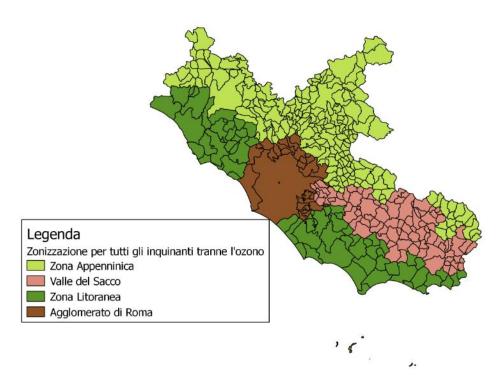


Figura 2.1 - Zone del territorio regionale del Lazio per tutti gli inquinanti a esclusione dell'ozono.

Relativamente all'ozono, la zona IT1214 è di fatto l'accorpamento delle zone Appenninica e Valle del Sacco relative alla Tabella 2.1.

Tabella 2.2 - Zonizzazione del territorio regionale per l'ozono.

ZONA	Codice	Comuni	Area (km²)	Popolazione
Litoranea 2021	IT1218	69	4958	1.196.305
Appennino-Valle del Sacco	IT1214	283	10002	1.178.568
Agglomerato di Roma 2021	IT1219	26	2272	3.514.210

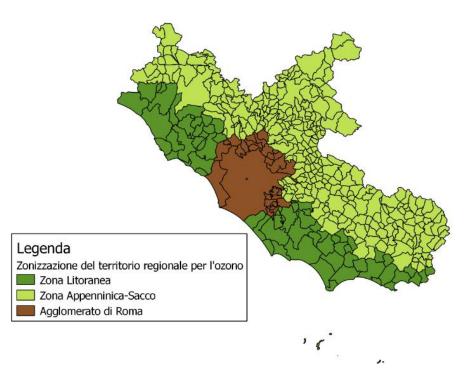


Figura 2.2 - Zone del territorio regionale del Lazio per l'ozono.

A seguito della zonizzazione del territorio, ciascuna zona o agglomerato è stato classificato allo scopo di individuare le modalità di valutazione della qualità dell'aria in conformità alle disposizioni del D.lgs. n. 155/2010 (D.G.R. n.305 del 28 maggio 2021 e n.119 del 15 marzo 2022).

In base alla classificazione effettuata, e al numero di abitanti delle zone individuate, il D.lgs. n. 155/2010 fissa il numero minimo di stazioni da prevedere nella rete di misura per ogni inquinante.

Alla luce della classificazione è poi stato redatto il progetto per la riorganizzazione della rete di monitoraggio, approvato dall'allora MATTM nel gennaio 2014 e aggiornato con la D.G.R. n. 1124 del 30 novembre 2022.

3. Analisi meteorologica

Il Lazio è costituito da strutture orografiche molto differenti tra loro.

Partendo dal Nord-Ovest della regione, si possono distinguere tre gruppi montuosi di modeste dimensioni: i monti Volsini, i monti Cimini ed i monti Sabatini. Caratteristica comune di questi gruppi montuosi è la loro origine vulcanica, testimoniata, oltre che dagli elementi geologici, dalla presenza, in ciascuno di questi, di un lago: il lago di Bolsena sui Volsini, il lago di Vico sui Cimini ed il lago di Bracciano sui Sabatini. Questi gruppi montuosi degradano dolcemente verso la pianura maremmana ad ovest, e verso la valle del Tevere ad est, le due pianure laziali più settentrionali. La Tuscia, ovvero la maremma laziale, trova qui il suo limite meridionale, nei Monti della Tolfa.

Nella parte orientale del Lazio si trovano i rilievi più alti della regione, che raggiungono con i Monti della Laga e in particolare con il monte Gorzano (2458 m), il loro punto più alto in questa piccola porzione laziale. Il resto del territorio Appenninico corre diagonalmente da nord-ovest a sud-est comprendendo i rilievi dei monti Reatini, Sabini, Simbruini ed Ernici, con rilevi attorno ai 1300-2200 m.

Accanto a questo va considerata l'ampia area costiera che coinvolge tutta la parte ovest del territorio e, chiaramente, l'area metropolitana di Roma che ha un'estensione di circa 1300 km².

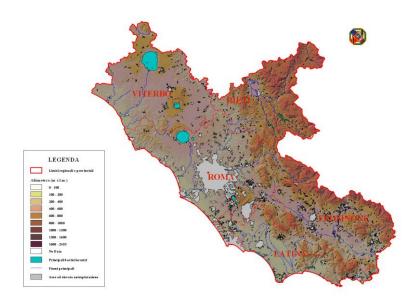


Figura 3.1 - Struttura orografica del territorio laziale.

La complessa struttura orografica influisce notevolmente sulle caratteristiche meteorologiche e micrometeorologiche del territorio che sono alla base dei processi di dispersione delle sostanze inquinanti rilasciati in atmosfera.

Di seguito viene riportata una descrizione delle principali caratteristiche meteorologiche della regione. L'analisi prenderà in considerazione i principali fenomeni meteorologici utili alla dispersione e abbattimento delle concentrazioni degli inquinanti atmosferici: precipitazioni, venti e variabili legate alla turbolenza atmosferica.

La Rete Meteorologica Regionale (RMR) è così composta:

- Rete Micro-Meteorologica (RMM): 9 stazioni;
- Rete Meteo Convenzionale (RMC): 3 mezzi mobili, una serie di sensori sulle stazioni di qualità dell'aria, la WTX (Weather Transmitter).

3.1 La rete micro-meteorologica dell'ARPA Lazio

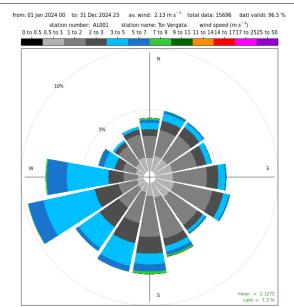
L'ARPA Lazio, a supporto della valutazione e previsione della qualità dell'aria, ha realizzato una rete micro-meteorologica (RMM) costituita da 9 stazioni con dotazione strumentale avanzata.

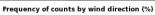
Quattro stazioni sono posizionate nell'Agglomerato di Roma, quattro nei capoluoghi di provincia della regione ed 1 nel comune di Ceprano. Le stazioni sono dotate di sensori meteorologici classici (temperatura, umidità, pressione e precipitazione) associati a strumentazione dedicata alla caratterizzazione delle proprietà turbolente e radiative dell'atmosfera, importanti per la dispersione degli inquinanti e la qualità dell'aria in generale (anemometri sonici, piranometri e pirgeometri).

Oltre alla valutazione della dispersione meccanica (vento) e del dilavamento (precipitazioni), tramite questi sensori si possono ricavare informazioni relative alla turbolenza atmosferica attraverso variabili ricavate (ad esempio, la velocità di attrito u* e il flusso di calore cinematico H₀) che danno indicazioni della capacità dispersiva dei primi strati dell'atmosfera.

Tabella 3.1 - Localizzazione delle stazioni della rete micro-meteorologica.

Zona	Sigla	Località	Latitudine	Longitudine
	AL001	Roma – CNR Tor Vergata	41.8417	12.6476
IT1219 - Agglomerato di Roma 2021	AL003	Roma – Tenuta del Cavaliere	41.9290	12.6583
di Koilla 2021	AL004	Roma – Castel di Guido	41.8894	12.2664
	AL007	Roma – Boncompagni	41.9093	12.4965
IT1217 - Valle del Sacco	AL006	Frosinone	41.6471	13.2999
2021	AL009	Ceprano	41.5439	13.4836
IT1218 – Litoranea 2021	AL002	Latina	41.4850	12.8457
IT1216 – Appenninica	AL005	Rieti	42.4294	12.8191
2021	AL008	Viterbo	42.4308	12.0625

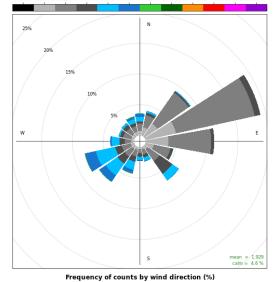


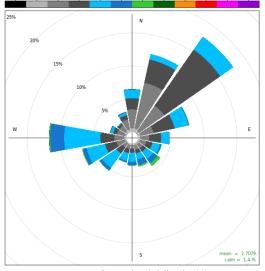

Figura 3.2 - Localizzazione delle stazioni della rete micro-meteorologica.

3.2 Intensità del vento

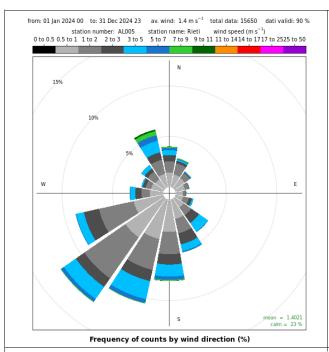
Utilizzando i dati della rete delle stazioni micro-meteorologiche dell'ARPA Lazio è possibile evidenziare le distribuzioni delle intensità e della direzione dei venti in diversi punti della regione.

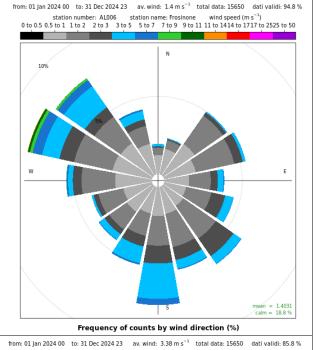
Nelle immagini seguenti sono rappresentate le rose dei venti nell'ordine: Roma-Tor Vergata e Latina, Roma-Tenuta del Cavaliere e Roma-Castel di Guido, Rieti e Frosinone, Roma-Via Boncompagni, Viterbo e Ceprano (rilocabile).

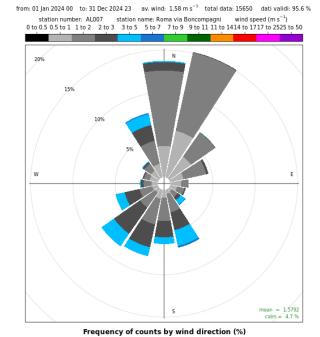


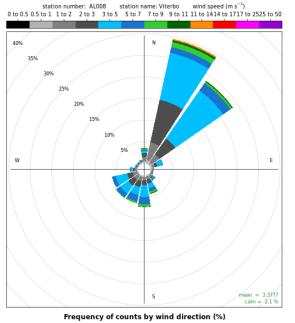

from: 01 Jan 2024 00 to: 31 Dec 2024 23 station number: ALIO02 station name: Latina wind speed (m s⁻¹) 11to 1414 to 1717 to 2525 to 50

Frequency of counts by wind direction (%)


from: 01 Jan 2024 00 to: 31 Dec 2024 23 av. wind: 1.93 m s⁻¹ total data: 15650 dati validi: 97.4 % station number: AL003 station name: Tenuta del Cavaliere wind speed (m s⁻¹) to 0.5 0.5 to 1 1 to 2 2 to 3 3 to 5 5 to 7 7 to 9 9 to 11 11 to 1414 to 1717 to 2525 to 50




from: 01 Jan 2024 00 to: 31 Dec 2024 23 av. wind: 2.71 m s $^{-1}$ total data: 15650 dati validi: 97.5 % station number: AL004 station name: Castel di Guido wind speed (m s $^{-1}$) 0 to 0.5 0.5 to 1 1 to 2 2 to 3 3 to 5 5 to 7 7 to 9 9 to 11 11 to 1414 to 1717 to 2525 to 50



Frequency of counts by wind direction (%)

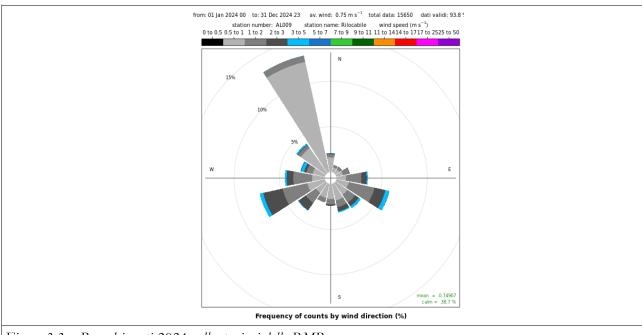


Figura 3.3 - Rose dei venti 2024 nelle stazioni della RMR.

Si evidenzia che la circolazione nelle stazioni di Viterbo, Tenuta del Cavaliere e Boncompagni è fortemente direzionale. A Viterbo e a Tenuta del Cavaliere i limiti sono imposti dall'orografia, mentre a Boncompagni dal contesto urbano circostante. Tor Vergata e Latina hanno rose più distribuite, con direzioni preferenziali dai quadranti sud/sud-ovest e ovest, riflesso della circolazione a mesoscala (brezza di mare), mentre Rieti e Frosinone tendono maggiormente a risentire della loro posizione geografica, circondata dalle valli. L'intensità media annuale dei venti è compresa tra i 0.75 m/s di Ceprano, protetta dall'orografia circostante, e i 3.38 m/s di Viterbo, dove probabilmente vi è un effetto di incanalamento delle correnti. La brezza di mare è poco evidente, ma comunque evidenziabile nei terzi quadranti di Tor Vergata e Castel di Guido, oltre che nei quadranti terzo e quarto di Latina. Mentre deboli, ma molto frequenti, risultano i venti catabatici che scendono la valle del Tevere registrati dalla stazione di Tenuta del Cavaliere (I quadrante).

Tabella 3.2 - Velocità medie dei venti (m/s) e calme degli ultimi 3 anni, e medie 2012-2023 (%).

Stazione RMR	vv medio 2024	vv medio 2023	vv medio 2022	vv medio 2012-23	Calme 2024	Calme 2023	Calme 2022	Calme 2012-23
Tor Vergata (RM)	2.13	2.18	2.19	2.22	7.3%	6.3%	6.5%	6.3%
Latina	1.66	1.73	1.74	1.74	14.1%	13.9%	13.6%	13.7%
Tenuta del Cavaliere (RM)	1.93	1.91	1.97	1.97	4.6%	5.4%	4.8%	5.1%
Castel di Guido (RM)	2.71	2.64	2.74	2.69	1.4%	1.5%	1.4%	1.5%
Rieti	1.40	1.55	1.53	1.56	23%	19.1%	21.4%	19.6%
Frosinone	1.40	1.49	1.47	1.49	18.8%	17%	18.4%	17.3%
Roma via Boncompagni (RM)	1.58	1.62	1.57	1.61	4.7%	3.9%	4.1%	3.9%
Viterbo	3.38	3.42	3.51	3.50	2.1%	2.2%	2.3%	2.1%

Stazione RMR	vv medio 2024	vv medio 2023	vv medio 2022	vv medio 2012-23	Calme 2024	Calme 2023	Calme 2022	Calme 2012-23
Ceprano/Rilocabile (FR)	0.75	-	-	-	38.7%	-	-	-
Media	1.88	2.07	2.09	2.10	12.7%	8.7%	9.7%	8.7%

Dal punto di vista della ventilazione, l'anno 2024 è stato leggermente meno ventoso del 2023 (~ -10%) e della media dei 12 anni precedenti (2012-2023). La percentuale di calma di vento è risultata generalmente maggiore rispetto all'anno precedente.

Il dato della RMR conferma quanto ricavato dalla rete sinottica (SYNOP). Le differenze di valori sono dovute alla diversa posizione geografica e alla diversa altezza dei sensori del vento. Anche nel caso dei dati SYOP, comunque, l'anno 2024 è risultato complessivamente meno ventoso degli anni precedenti (Tabella 3.3).

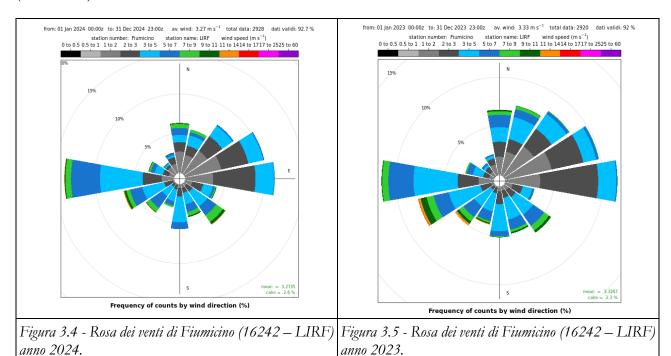


Tabella 3.3 - Velocità media dei venti 2024 (m/s) e calme.

Stazione SYNOP	Vento medio 2024	Vento medio 2023	Vento medio 2022	Calme 2024	Calme 2023	Calme 2022
Viterbo*	4.07	4.09	4.15	0.8%	1%	0.8%
Guidonia*	2.76	2.75	2.87	4.8%	4.7%	4.4%
Fiumicino	Tiumicino 3.28 3		3.32	2.6%	2.3%	2.4%
Ciampino	2.97	2.90	2.96	2.3%	2.3%	2%
Pratica di Mare	3.77	3.76	3.70	1.1%	1.4%	1.9%
Latina*	2.84	3.04	3.31	7.1%	5.3%	2.2%

Stazione SYNOP	Vento medio 2024	Vento medio 2023	Vento medio 2022	Calme 2024	Calme 2023	Calme 2022
Frosinone*	2.21	2.33	2.55	0%	0.1%	0.3%
Media	3.13	3.15	3.27	2.7%	2.5%	2.0%

(*stazioni SYNOP con disponibilità dati solo durante il giorno).

La Figura sottostante mostra le rose dei venti mensili della stazione 16242 Fiumicino.

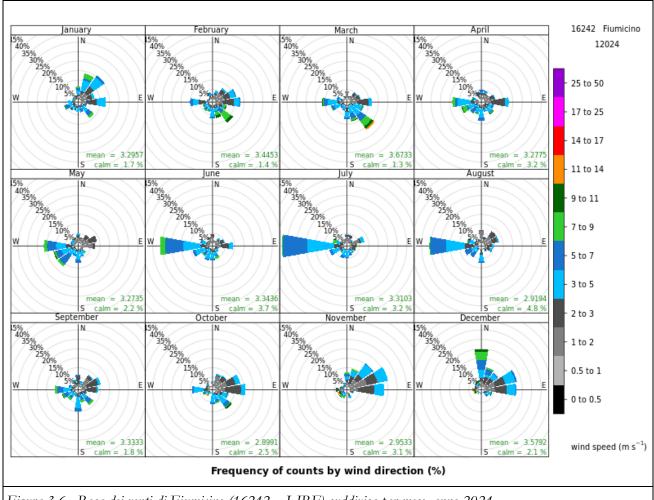


Figura 3.6 - Rosa dei venti di Fiumicino (16242 – LIRF) suddivisa per mese, anno 2024.

3.3 Precipitazioni

Analizzando i dati della rete micrometeorologica dell'ARPA Lazio e quelli della rete ARSIAL, l'anno 2024 è stato complessivamente meno piovoso del precedente: i mesi meno piovosi sono stati giugno e luglio, mentre particolarmente piovosi sono stati i mesi di settembre e ottobre 2024.

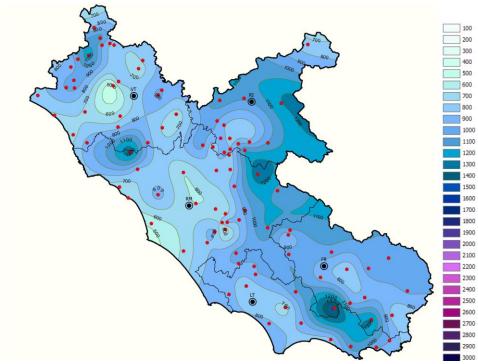


Figura 3.7 - Mappa ARSIAL precipitazioni 2024.

L'istogramma a seguire mostra il confronto 2024-2023-2022-2021 della precipitazione per le 8¹ stazioni RMM e per 5 stazioni ARSIAL scelte come riferimento per ogni capoluogo di provincia (VT-Montefiascone, RI-Rieti, RM-Lanciani, FR-Alatri, LT-Pontinia). Nel 2024 le precipitazioni complessive sono state leggermente inferiori rispetto al 2023.

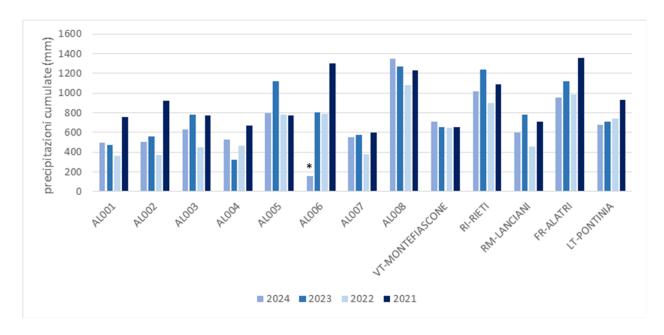


Figura 3.8 – Confronto precipitazioni 2024-2021 (* il dato relativo alla stazione AL006 Frosinone non è rappresentativo dell'anno per un gusto al pluviometro)

Valutazione della qualità dell'aria - 2024

¹ Nelle analisi dei dati storici delle stazioni della rete micrometeo non viene inclusa la stazione AL009 Ceprano/Rilocabile poiché non presenta una serie storica di durata adeguata.

3.4 Temperatura

Analizzando i dati della rete micrometeorologica dell'ARPA Lazio e quelli della rete ARSIAL, l'anno 2024 è stato più caldo del precedente, in modo particolare per il mese di agosto. L'incremento medio di temperatura rispetto alla media del periodo 2013-2023 della serie storica dell'ARPA Lazio è di 0,48°C. Secondo il CNR-ISAC l'anno 2024 è stato, a livello nazionale, il più caldo di sempre, con un'anomalia termica di 1,46°C rispetto alla media 1991-2020.



Figura 3.9 – Mappe mensili temperatura ARSIAL.

L'istogramma a seguire mostra il confronto 2024-2023-2022-2021 della temperatura media per 8 stazioni della RMM e per 5 stazioni ARSIAL scelte come riferimento per ogni capoluogo di provincia (VT-Montefiascone, RI-Rieti, RM-Lanciani, FR-Alatri, LT-Pontinia). Nel 2024 la temperatura media risulta superiore rispetto agli altri anni.

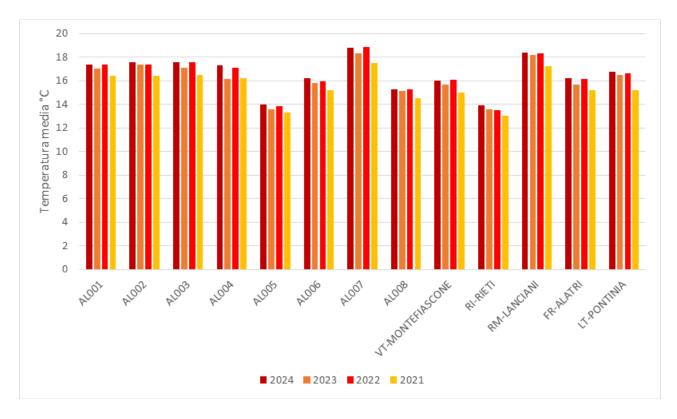


Figura 3.10 — Confronto temperatura 2024-2021.

Analizzando l'andamento mensile, i mesi che hanno mostrato un maggior incremento di temperatura in confronto all'anno precedente sono stati gennaio, febbraio, marzo, aprile, e in modo particolare agosto. Il 2024 è risultato più caldo rispetto al 2023 per tutti i primi otto mesi dell'anno. Nella figura 3.11 viene riportato l'andamento della temperatura media relativo agli anni 2024 e 2023, registrata presso la centralina AL001 Tor Vergata.

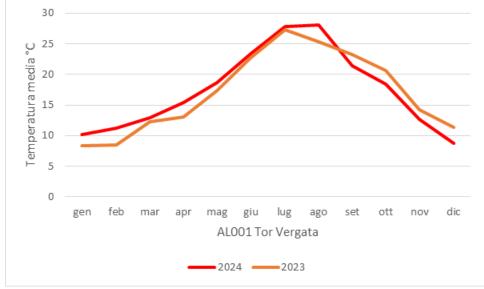


Figura 3.11 – Confronto 2024-2023 dell'andamento della temperatura media per la stazione AL001 Tor Vergata.

3.5 Valori estremi anno 2024 e conclusioni meteorologiche

A seguire si riportano i valori estremi registrati per le 5 stazioni ARSIAL scelte come riferimento per ogni capoluogo di provincia (VT-Montefiascone, RI-Rieti, RM-Lanciani, FR-Alatri, LT-Pontinia). Si sottolinea il massimo di temperatura a luglio con valori anche oltre i 40 °C.

Tabella 3.4 – Valori estremi anno 2024 stazioni ARSIAL.

Stazioni	Temperatura massima	Temperatura minima	Precipitazione massima assoluta	Giorni piovosi (precipitazio ne > 1 mm)
VT - Montefiascone	39,1 °C (il 31/07)	- 0,2 °C (il 23/11)	47,5 mm (il 03/10)	78
RI - Rieti	37,7 °C (il11/08)	- 6,4 °C (il 31/01)	54,7 mm (il 08/09)	103
RM - Lanciani	38,7 °C (il 20/06)	1,4 °C (il 22/12)	44,6 mm (il 3/12)	74
FR - Alatri	40,7 °C (il 15/07)	- 0,2 °C (il 21/01)	59 mm (il 09/09)	98
LT - Pontinia	37,8 °C (il 11/08)	- 2,6 °C (il 31/01)	52,2 mm (il 10/02)	76

Riassumendo, i dati evidenziano un 2024 meno ventilato, leggermente meno piovoso e complessivamente più caldo del 2023.

Nell'anno 2024 si conferma l'andamento generale che ha visto, negli ultimi 12 anni, un progressivo innalzamento della temperatura media, come è evidente dalla figura sottostante, con un incremento medio di 1,4°C negli ultimi 12 anni.

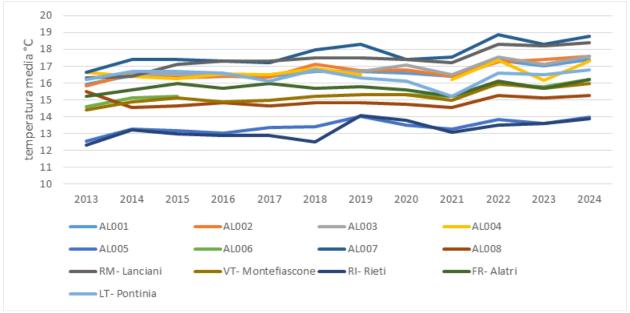
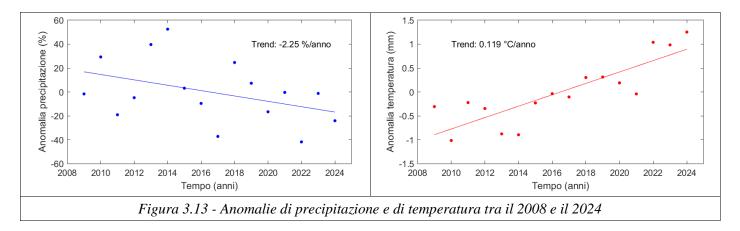



Figura 3.12 – Andamento temperatura media 2013-2024 delle stazioni RMM e ARSIAL.

In aggiunta, all'incremento di temperatura è stato associato un decremento delle precipitazioni. A titolo di esempio, in Figura 3.13 si riportano i trend che mostrano le anomalie di entrambe le variabili (calcolate come differenza tra la media del periodo 2008-2024 e il valore medio o, nel caso delle precipitazioni, cumulato registrato nel 2024) in funzione del tempo, per la stazione ARSIAL di Roma Lanciani. Dal grafico si evince che per le precipitazioni si registra un trend negativo di -2.25%/anno, e per le temperature un aumento di 0.11°C/anno.

4. Rete di monitoraggio regionale di qualità dell'aria

Nel 2024, la rete di monitoraggio della qualità dell'aria regionale ha compreso 55 stazioni di monitoraggio di cui 41 incluse nel progetto di rete del Programma di Valutazione della qualità dell'aria regionale aggiornato con la D.G.R. n. 1124 del 2022 (con riferimento all'art. 5, commi 6 e 7, del D.lgs. 155/2010 e ss.mm.ii).

L'aggiornamento del programma di valutazione della qualità dell'aria ha determinato l'attuazione di alcune modifiche alla rete automatica di monitoraggio della qualità dell'aria rispetto all'impostazione degli anni precedenti, sia in termini di assetto strumentale, sia in termini di ubicazione delle centraline.

Nel 2024 la stazione di misura "Santa Marinella" è stata spostata in una nuova posizione e denominata "Santa Severa".

Il programma di valutazione prevede l'operatività di 45 stazioni fisse di misura sul territorio regionale, di cui 4 sono ancora da predisporre: 1 in Zona Valle del Sacco, 1 in Zona Litoranea e 2 nell'Agglomerato di Roma. Si prevede di completare l'implementazione della rete di misura prevista dalla DGR n.1124/2022 entro il 2025.

Le centraline attualmente non incluse nel programma di valutazione sono quattordici: Boncompagni nell'Agglomerato di Roma e le restanti in zona Litoranea. Nello specifico, S. Agostino, Fiumaretta, Faro, Monte Romano, Civitavecchia Campo Oro, Civitavecchia Morandi, Civitavecchia Via Roma, Aurelia, San Gordiano, Santa Severa, Allumiere Aldo Moro, Tolfa Braccianese e Tarquinia appartengono alla rete "ex-Enel" realizzata per il monitoraggio della centrale di produzione elettrica di Torrevaldaliga Nord. Di queste, la centralina Tarquinia non è attualmente in funzione.

Si segnala che presso la centralina di Fiumaretta, situata nella Zona Litoranea, si è verificato un problema tecnico (interruzione della fornitura elettrica) indipendente dalle attività di gestione svolte dall'Agenzia, che ha comportato l'interruzione delle rilevazioni a partire da agosto 2024. Di conseguenza, la copertura temporale dei dati raccolti non soddisfa gli obiettivi di qualità previsti dal D.lgs. n. 155/2010 e risulta insufficiente per il calcolo degli standard annuali.

Le stazioni di misura attive sono dislocate nell'intero territorio regionale come di seguito indicato:

- 18 stazioni nell'Agglomerato di Roma (di cui 1 non inclusa nel Programma di Valutazione regionale);
- 10 stazioni in Zona Valle del Sacco;
- 5 stazioni in Zona Appenninica;
- 20 stazioni in zona Litoranea (di cui 13 non incluse nel Programma di Valutazione regionale).

La Figura 4.1 riporta la dislocazione delle stazioni di misura sul territorio regionale.

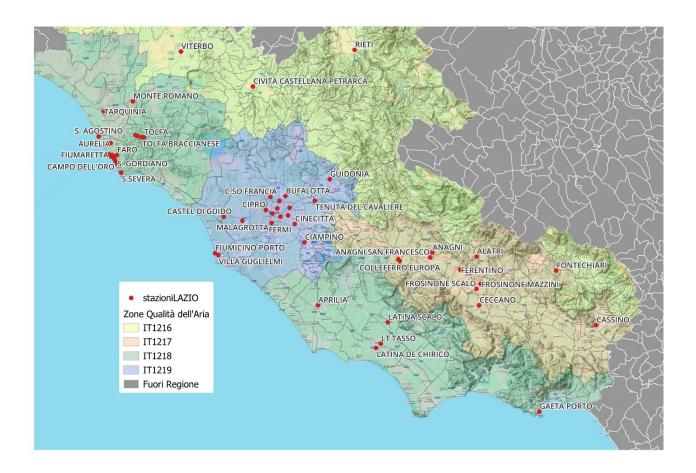


Figura 4.1 - Localizzazione delle stazioni della rete di misura regionale del Lazio nel 2024.

Per un approfondimento, nelle Figura 4.2, Figura 4.3 e Figura 4.4 sono riportati i dettagli cartografici delle stazioni localizzate, rispettivamente, nell'Agglomerato di Roma, nella Zona Valle del Sacco e nel comprensorio di Civitavecchia.

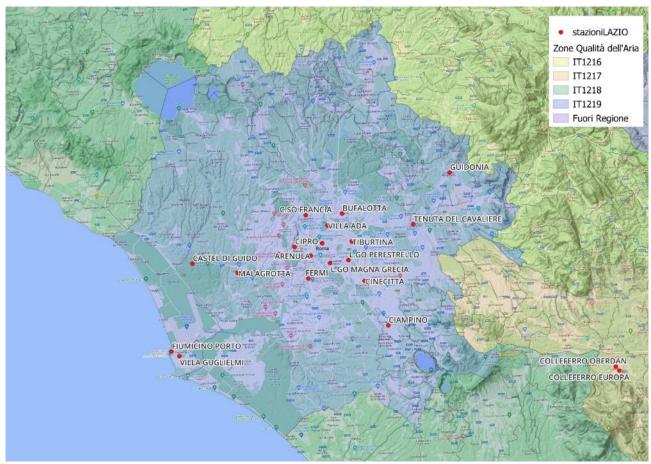


Figura 4.2 - Stazioni dell'Agglomerato di Roma.

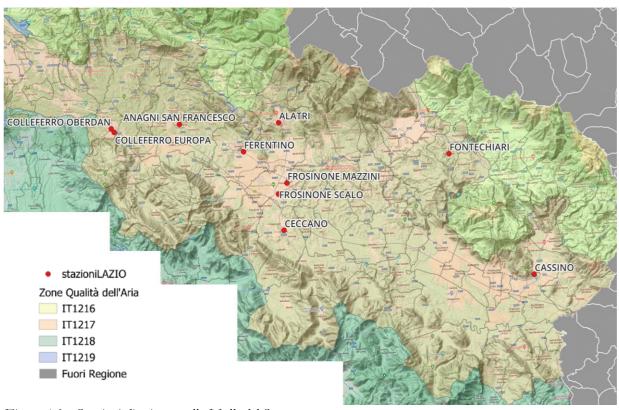


Figura 4.3 - Stazioni di misura nella Valle del Sacco.

Figura 4.4 - Stazioni della rete di misura nel comprensorio di Civitavecchia.

Nelle tabelle seguenti vengono riportate la dotazione strumentale e la localizzazione di ogni stazione fissa di misura relative al 2024, per ogni zona e agglomerato in cui il territorio regionale è suddiviso ai fini della valutazione della qualità dell'aria.

Si fa presente che, come già riportato nel capitolo 2, in occasione dell'aggiornamento della zonizzazione è stato inserito il riferimento "2021" dopo i nomi delle zone, per indicare l'anno di riesame, e per distinguere le denominazioni aggiornate da quelle della zonizzazione precedente. Tuttavia, per migliorare la leggibilità dei dati e agevolarne la consultazione, la dicitura "2021" sarà omessa dai grafici e dalle tabelle.

Tabella 4.1 - Localizzazione e dotazione strumentale delle stazioni dell'Agglomerato di Roma.

	Agglomerato di Roma												
Comune	Stazione	Lat.	Long	PM ₁₀	PM _{2.5}	NO _X	BTEX	SO ₂	CO	O_3	Metalli	IPA	
Roma	L.go Arenula	41.89	12.48	X	X	X				X			
Roma	Preneste	41.89	12.54	X		X				X			
Roma	C.so Francia	41.95	12.47	X	X	X	X				X	X	
Roma	L.go Magna Grecia	41.88	12.51	X		X							
Roma	Cinecittà	41.86	12.57	X	X	X				X	X	X	
Guidonia Montecelio	Guidonia	42.00	12.73	X	X	X		X					
Roma	Villa Ada	41.93	12.51	X	X	X	X	X	X	X	X	X	
Roma	Castel di Guido	41.89	12.27	X	X	X				X			
Roma	Tenuta del Cavaliere	41.93	12.66	X	X	X				X			

			Ag	glomer	ato di F	loma						
Comune	Stazione	Lat.	Long	PM ₁₀	PM _{2.5}	NOx	BTEX	SO_2	CO	O_3	Metalli	IPA
Ciampino	Ciampino	41.80	12.61	X		X	X				X	X
Roma	Fermi	41.86	12.47	X		X	X		X			
Roma	Bufalotta	41.95	12.53	X		X				X		
Roma	Cipro	41.91	12.45	X	X	X				X		
Roma	Tiburtina	41.91	12.55	X		X						
Roma	Malagrotta	41.87	12.35	X	X	X	X	X		X		
Roma	Boncompagni^	41.91	12.50	X	X	X				X		
Fiumicino	Porto	41.77	12.22	X		X		X				
Fiumicino	Villa Guglielmi	41.77	12.24	X	X	X				X		

^{(^) –} Centralina non inclusa nel progetto di rete.

Tabella 4.2 - Localizzazione e dotazione strumentale delle stazioni della Zona Valle del Sacco.

			Zo	ona Val	le del Sa	ассо						
Comune	Stazione	Lat.	Long.	PM ₁₀	PM _{2.5}	NO _X	BTEX	SO ₂	СО	O_3	Metalli	IPA
Colleferro	Colleferro Oberdan	41.73	13.00	X		X		X	X	X		
Colleferro	ro Colleferro Europa		13.01	X	X	X					X	X
Alatri	Alatri	41.73	13.34	X		X						
Anagni	Anagni San Francesco	41.73	13.14	X		X						
Cassino	Cassino	41.49	13.83	X	X	X						
Ceccano	Ceccano	41.57	13.34	X		X						
Ferentino	Ferentino	41.69	13.25	X	X	X						
Fontechiari	Fontechiari	41.67	13.67	X	X	X		X		X	X	X
Frosinone	Frosinone Mazzini	41.64	13.35	X	X	X	X			X	Χ^	X
Frosinone	Frosinone Scalo	41.62	13.33	X		X	X		X		X	X

Tabella 4.3 - Localizzazione e dotazione strumentale delle stazioni della Zona Appenninica.

	Zona Appenninica														
Comune	Stazione	Lat.	Long.	PM ₁₀	PM _{2.5}	NOx	BTEX	SO_2	CO	O_3	Metalli	IPA			
Leonessa	Leonessa	42.57	12.96	X	X	X		X		X					
Rieti	Rieti	42.40	12.86	X	X	X	X	X			X	X			
Acquapendente	Acquapendente	42.74	11.88	X	X	X				X					
Civita Castellana	Civita Castellana Petrarca	42.30	12.41	X		X		X							
Viterbo	Viterbo	42.42	12.11	X	X	X	X		X						

Tabella 4.4 - Localizzazione e dotazione strumentale delle stazioni della Zona Litoranea.

	<u>izzazione e aoiaz</u>				itoranea		77707 237707					
Comune	Stazione	Lat.	Long.	PM ₁₀	PM _{2.5}	NO _X	BTEX	SO_2	CO	O_3	Metalli	IPA
Aprilia	Aprilia	41.60	12.65	X		X						
Latina	Latina Scalo	41.53	12.95	X	X	X						
Latina	LT de Chirico	41.27	12.53	X	X	X	X		X			
Latina	LT Tasso	41.46	12.91	X		X				X		
Gaeta	Gaeta Porto	41.22	13.57	X		X		X		X		
Allumiere	Allumiere	42.16	11.91	X		X		X		X		
Civitavecchia	Civitavecchia	42.09	11.80	X	X	X	X			X	X	X
Civitavecchia	Villa Albani	42.10	11.80	X	X	X						
Civitavecchia	Via Roma^	42.09	11.80			X			X			
Civitavecchia	Via Morandi^	42.10	11.79			X				X		
Civitavecchia	Porto	42.09	11.81	X		X		X				
Civitavecchia	Aurelia^	42.14	11.79	X		X						
Civitavecchia	Fiumaretta^	42.10	11.78	X	X	X	X	X	X		X	X
Civitavecchia	Faro^	42.10	11.82	X	X	X		X				
Civitavecchia	Campo dell'Oro^	42.08	11.81	X	X	X		X				
Civitavecchia	S. Gordiano^	42.07	11.82	X		X						
Allumiere	Allumiere Moro^	42.16	11.90	X	X	X		X		X		
Tolfa	Tolfa Braccianese^	42.15	11.92	X		X						
Tarquinia	S. Agostino^	42.16	11.74	X	X	X		X		X		
Monte Romano	Monte Romano^	42.27	11.91	X		X						
Santa Marinella	Santa Severa^	42.02	11.95	X		X				X		
Tarquinia	Tarquinia^	42.24	11.76				Non in	funzio	ne			

^{(^) –} Centralina non inclusa nel progetto di rete.

5. Standard di qualità dell'aria

In questa sezione vengono riportati gli standard di legge derivati dalle misure, sia continue che discontinue (IPA e metalli), della rete di monitoraggio di qualità dell'aria del territorio regionale.

Il D.lgs. n. 155/2010 dispone il rispetto dei valori limite degli inquinanti atmosferici, riportati nella Tabella 5.1, sia ai fini della protezione della salute umana, sia a tutela della vegetazione.

Tabella 5.1 – Standard normativi previsti dal D.lgs. n. 155/2010.

1 400	lla 3.1 – Standard normativi	previsii aai D.igs.	n, 199/201	0.
Inquinante	Indicatore normativo	Periodo mediazione	Valore stabilito	Numero superamenti consentiti
PM ₁₀	Valore limite per la protezione della salute umana	24 ore	50 μg/m ³	35
1 17110	Valore limite per la protezione della salute umana	Anno civile	40 μg/m ³	-
PM _{2.5}	Valore limite per la protezione salute umana	Anno civile	25 μg/m ³	-
	Valore limite per la protezione della salute umana	1 ora	200 μg/m ³	18
NO_2	Valore limite per la protezione della salute umana	Anno civile	40 μg/m³	-
1102	Soglia di allarme	3 ore consecutive in una stazione con rappresentatività > 100 km ²	400 μg/m³	-
Benzene	Valore limite per la protezione della salute umana	Anno civile	5 μg/m ³	-
	Valore limite per la protezione della salute umana	1 ora	350 μg/m ³	24
SO ₂	Valore limite per la protezione della salute umana	24 ore	125 μg/m ³	3
302	Soglia di allarme	3 ore consecutive in una stazione con rappresentatività > 100 km²	500 μg/m³	-
СО	Valore limite per la protezione della salute umana	Media massima giornaliera calcolata su 8h consecutive	10 mg/m ³	-
O ₃	Valore obiettivo protezione della salute umana	Massima media su 8h consecutive nell'anno	120 μg/m³	Da non superare per più di 25 giorni per anno civile

Inquinante	Indicatore normativo	Periodo mediazione	Valore stabilito	Numero superamenti consentiti
				come media su 3 anni
	AOT40-Valore obiettivo per la protezione della vegetazione	Maggio-Luglio tra le 8:00 e le 20:00	18000 μg/m³*h come media su 5 anni	-
	Soglia di informazione	1 ora	180 μg/m ³	-
	Soglia di allarme	1 ora	240 μg/m ³	-
Arsenico	Valore obiettivo	Anno civile	6 ng/m ³	-
Cadmio	Valore obiettivo	Anno civile	5 ng/m ³	-
Nichel	Valore obiettivo	Anno civile	20 ng/m ³	-
Piombo	Valore limite per la protezione della salute umana	Anno civile	$0.5 \mu \mathrm{g/m^3}$	-
Benzo(a)pirene	Valore obiettivo	Anno civile	1 ng/m3	-

Nella tabella seguente viene riportato un quadro sintetico, per ogni zona, che riassume la verifica del rispetto dei valori limite per la protezione della salute umana imposti dal D.lgs. n. 155/2010.

Tabella 5.2 - Quadro riassuntivo dei superamenti riscontrati dal monitoraggio da rete fissa nel Lazio nel 2024.

Zona	SO_2	NO_2	PM ₁₀	PM _{2.5}	СО	O ₃	Benzene	B(a)P	Metalli
Agglomerato di Roma									
Zona Valle del Sacco									
Zona Appenninica									
Zona Litoranea									

In rosso è evidenziato il superamento, e in verde il rispetto dei valori limite per la protezione della salute umana.

I superamenti dei valori limite per la protezione della salute umana, riscontrati a seguito dell'attività di monitoraggio condotta tramite la rete fissa della qualità dell'aria del Lazio nel 2024, sono stati riscontrati relativamente all'NO₂ nell'Agglomerato di Roma, al PM₁₀ nella Zona Valle del Sacco e, in ultimo, all'O₃ nell'Agglomerato di Roma e nella Zona Litoranea.

Per gli inquinanti per i quali la normativa prevede più valori limite, è stato considerato, per ciascuna zona, l'indicatore che determina il superamento degli standard normativi.

Nei paragrafi successivi verranno riportati e discussi approfonditamente i dati di ogni singola stazione della rete di monitoraggio di qualità dell'aria e i dati emersi dalle analisi di IPA e metalli, effettuate sui campioni di PM_{10} .

5.1 Dati della rete automatica di misura - PM₁₀, PM_{2.5}, NO₂, C₆H₆, SO₂, CO, O₃

Ai fini della verifica del rispetto dei limiti imposti dal D.lgs. n. 155/2010, in questa sezione del documento sono riportati e discussi i valori degli standard di legge di tutti gli inquinanti rilevati in continuo dalle stazioni della rete di monitoraggio.

5.1.1 Agglomerato di Roma

La Tabella 5.3 presenta i valori delle concentrazioni degli inquinanti atmosferici misurati nell'Agglomerato di Roma nel 2024 (i superamenti del valore limite sono riportati in rosso) e la tipologia di stazione (background urbano, UB; background suburbano, SB; urbana da traffico, UT; suburbana di traffico, ST; background rurale, RB; industriale, I).

Come si deduce dalla tabella, nel 2024 sono emerse delle criticità relative alla concentrazione di NO_2 e O_3 . In particolare, la centralina Fermi ha registrato una concentrazione media annuale di NO_2 pari a 44 $\mu g/m^3$, quindi al di sopra del valore limite di 40 $\mu g/m^3$ imposto dal D.lgs. n. 155/2010. Il numero di superamenti del valore limite orario di NO_2 , corrispondente a 200 $\mu g/m^3$, non ha invece superato mai la soglia massima consentita (18 superamenti l'anno).

Relativamente all'O₃, il valore obiettivo per la protezione della salute umana di 120 μg/m³, calcolato come media su 3 anni del massimo consentito, e da non superare per più di 25 giorni per anno civile, è stato raggiunto e superato dalla centralina Tenuta del Cavaliere che ha registrato un numero di superamenti pari a 26.

La media annua di PM_{10} non ha superato il valore limite fissato a 40 $\mu g/m^3$ in nessuna stazione della rete di misura dell'Agglomerato di Roma e il numero massimo di superamenti del valore limite giornaliero di 50 $\mu g/m^3$ stabilito dal D.lgs. n. 155/2010, pari a 35, non è stato raggiunto e superato dalle centraline dell'Agglomerato di Roma. Inoltre, non si sono registrati superamenti del valore limite annuo relativo al $PM_{2.5}$, pari a 25 $\mu g/m^3$.

I valori di benzene, SO₂ e CO sono risultati inferiori ai rispettivi valori limite.

Tabella 5.3 - Standard di legge del 2024 per le stazioni localizzate all'interno dell'Agglomerato di Roma.

ZONA	COMUNE	NOME	TIPO	PI	M_{10}	PM _{2.5}	N	\mathbf{O}_2	BENZENE	SC	O_2	CO	O_3			
				Media annua valore limite 40 (μg/m³)	Numero di superamenti valore limite giornaliero di 50 μg/m³ max 35 anno	Media annua ($\mu \mathrm{g/m^3}$)	Media annua (μg/m³)	Numero di superamenti di 200 µg/m³	Media annua (μg/m³)	Numero di superamenti valore limite giornaliero di 125 µg/m³	Numero di superamenti valore limite orario di 350 µg/m³	Numero di superamenti max media mob. su 8 ore	* AOT40 µg/m³*h	** Valore Obiettivo (numero di superamenti max media mob. su 8 ore)	Numero di superamenti orari di 180 $\mu \mathrm{g/m^3}$	Numero di superamenti orari di 240 μg/m³
	Roma	Villa Ada	UB	23	8	11	19	0	0.6	0	1	0	11649	17	1	0
	Roma	Arenula	UB	24	12	13	30	0					531	0	0	0
	Roma	Bufalotta	UB	23	11		30	0					8363	7	0	0
	Roma	Tenuta del Cavaliere	SB	22	10	12	20	0					16772	26	0	0
	Ciampino	Ciampino	UT	27	19		24	0	0.9							
MA	Roma	Cinecittà	UB	25	16	13	28	0					15752	20	0	0
RO	Roma	Cipro	UB	25	11	12	28	0					4372	1	0	0
IQ	Roma	Fermi	UT	27	11		44	0	1.5			0				
TO	Roma	C.so Francia	UT	28	15	13	34	0	1.1		-					
AGGLOMERATO DI ROMA	Fiumicino	Fiumicino Villa Guglielmi	UB	21	8	10	25	0			-		6782	1	0	0
O N	Fiumicino	Fiumicino Porto	I	24	9		17	0		0	0					
\GGL	Roma	L.go Magna Grecia	UT	26	17		40	0								
	Roma	Castel di Guido	RB	21"	8"	9"	9	0					7791	8	0	0
	Guidonia Montecelio	Guidonia	ST	21	4	9	19	0		0	0					
	Roma	Malagrotta	SB	21	10	11	15	0	0.3	0	0		8187	1	0	0
	Roma	Preneste	UB	28	16		24	0					16454	20	1	0
	Roma	Tiburtina	UT	28	27		32	0								

(*): calcolato come media su 5 anni (2020-2024); (**): calcolato come media su 3 anni (2022-2024); ("): la copertura temporale dei dati non è sufficiente a computare gli standard annuali. Valutazione della qualità dell'aria - 2024

5.1.2 Zona Valle del Sacco

Nel 2024, le stazioni ubicate nella Zona della Valle del Sacco hanno registrato il superamento dei valori limite relativi al PM_{10} (i superamenti del valore limite sono riportati in rosso). Il numero di superamenti giornalieri di 50 $\mu g/m^3$ ha ecceduto i 35 consentiti dalla norma nelle stazioni di Colleferro Europa, Cassino, Ceccano e Frosinone Scalo che hanno registrato rispettivamente 47, 56, 79 e 70 superamenti. Ciononostante, la media annua della concentrazione di PM_{10} non ha mai superato il valore limite stabilito dalla norma di 40 $\mu g/m^3$.

Nessuna centralina della zona oggetto di discussione ha superato il limite annuo relativo al $PM_{2.5}$ di 25 $\mu g/m^3$.

In merito all' NO_2 non sono stati rilevati superamenti né del valore limite orario di 200 $\mu g/m^3$, né del valore limite annuale, pari a 40 $\mu g/m^3$. Tuttavia, si fa presente che il valore di concentrazione media annua più elevato è stato registrato dalla stazione di Alatri (32 $\mu g/m^3$).

Analogamente, i valori di O₃, benzene, SO₂ e CO sono rimasti al di sotto dei rispettivi valori limite imposti dalla norma.

Tabella 5.4 - Standard di legge del 2024 per le stazioni localizzate all'interno della Zona Valle del Sacco.

ZONA	COMUNE	NOME	TIPO	P	\mathbf{M}_{10}	$PM_{2.5}$	N	O_2	BENZENE	SC	O_2	CO		C)3	
				Media annua valore limite 40 ($\mu g/m^3$)	Numero di superamenti valore limite giornaliero di 50 µg/m³ max 35 anno	Media annua (µg/m³)	Media annua (μg/m³)	Numero di superamenti di 200 µg/m³	Media annua (µg/m³)	Numero di superamenti valore limite giornaliero di 125 µg/m³	Numero di superamenti valore limite orario di 350 μg/m³	Numero di superamenti max media mob. su 8 ore	* AOT40 µg/m³*h	**Valore Objettivo (numero di superamenti max media mob. su 8 ore)	Numero di superamenti orari di 180 $\mu g/m^3$	Numero di superamenti orari di 240 μg/m³
	Colleferro	Colleferro Oberdan	I, SB	28	25		24	0		0	0	0	4573	1	8	0
00	Colleferro	Colleferro Europa	I, SB	30	47	17	20	0								
SACCO	Alatri	Alatri	UB	25	30		29	0								
DEL S.	Anagni	Anagni San Francesco	UB	22	13		13	0								
ΕD	Cassino	Cassino	UT	33	56	20	31	0								
ZONA VALLE	Ceccano	Ceccano	UT	35	79		24	0								
VA	Ferentino	Ferentino	UT	27	33	19	22	0								
NA	Fontechiari	Fontechiari	RB	15	7	10	4	0		0	0		13031	9	0	0
ZO	Frosinone	Frosinone Mazzini	UB	23	19	15	21	0	0.9				5327	0	0	0
(*) 1.1.	Frosinone	Frosinone Scalo	UT	31	70		25	0	1.8			0				

(*): calcolato come media su 5 anni (2020-2024); (**): calcolato come media su 3 anni (2022-2024).

Valutazione della qualità dell'aria - 2024

5.1.3 Zona Appenninica

Nel 2024, nella Zona Appenninica (Tabella 5.5) non è stato registrato alcun superamento dei valori limite relativi a PM_{10} , $PM_{2.5}$, NO_2 , benzene, SO_2 , CO e O_3 .

Tabella 5.5 - Standard di legge del 2024 per le stazioni localizzate all'interno della Zona Appenninica.

ZONA	COMUNE	NOME	TIPO	PN	I_{10}	$PM_{2.5}$	PM _{2.5} NO ₂ B		BENZENE		SO_2	CO		C)3	
				Media annua valore limite 40 ($\mu g/m^3$)	Numero di superamenti valore limite giornaliero di 50 µg/m³ max 35 anno		Media annua (µg/m³)	Numero di superamenti di 200 µg/m³	Media annua (µg/m³)	Numero di superamenti valore limite giornaliero	Numero di superamenti valore limite orario di 350 µg/m³	Numero di superamenti max media mob. su 8 ore	* AOT40 µg/m³*h	** Valore Obiettivo (numero di superamenti max media mob. su 8 ore)	Numero di superamenti orari di 180 $\mu g/m^3$	Numero di superamenti orari di 240 µg/m³
ICA	Leonessa	Leonessa	RB	14	8	8	4	0		0	0		12214	8	0	0
ZZ	Rieti	Rieti	UT	18	8	9	16	0	0.6	0	0					
APPENNINICA	Civita Castellana	Civita Castellana Petrarca	UB	19	17		11	0		0	0	1	1			
ZONA	Viterbo	Viterbo	UT	19	6	9	19	0	0.7			0	-1			
	Acquapendente		RB	15	5	9	4	0					8132	1	0	0

(*): calcolato come media su 5 anni (2020-2024); (**): calcolato come media su 3 anni (2022-2024).

Valutazione della qualità dell'aria - 2024

5.1.4 Zona Litoranea

Nella Zona Litoranea, l'unica criticità riscontrata nel 2024 ha riguardato l'O₃. Nello specifico, l'indicatore AOT40 è risultato superiore ai 18000 μg/m³*h previsti dalla norma di riferimento nella stazione di Allumiere Via Aldo Moro (21445 μg/m³*h). Nello stesso sito, inoltre, sono stati registrati 43 superamenti del valore limite di concentrazione di O₃ pari a 120 μg/m³, calcolato come media mobile massima sulle 8 ore e come media su 3 anni, a fronte dei 25 ammessi dalla norma.

Tabella 5.6 - Standard di legge del 2024 per le stazioni localizzate all'interno della Zona Litoranea.

ZONA	COMUNE	NOME	TIPO	P	M_{10}	PM _{2.5}			BENZENE	SO ₂ CO			-				
				Media annua valore limite 40 ($\mu g/m^3$)	Numero di superamenti valore limite giornaliero di 50 µg/m³ max 35	Media annua ($\mu \mathrm{g}/\mathrm{m}^3$)	Media annua (µg/m³)	Numero di superamenti di 200 μg/m³	Media annua (μg/m³)	Numero di superamenti valore limite giornaliero di 125 μg/m³	Numero di superamenti valore limite orario di 350 µg/m³	Numero di superamenti max media mob. su 8	* AOT40 µg/m³*h	** Valore Obiettivo (numero di superamenti max media mob. su 8 ore)	Numero di superamenti orari di 180 $\mu g/m^3$	Numero di superamenti orari di 240 µg/m³	
	Allumiere	Allumiere	RB	14	6		7	0		0	0		12467	18	0	0	
	Aprilia	Aprilia	UB	23	9		16	0									
	Civitavecchia	Villa Albani	UT	23	11	9	21	0									
	Civitavecchia	Civitavecchia	UB	23	10	9	15	0	0.5				2251	0	0	0	
	Civitavecchia	Via Morandi	^				14	0					1817	0	0	0	
	Civitavecchia	Porto	^	17	8		19	0		0	0						
┫	Civitavecchia	Via Roma	^				24	0				0					
Z E	Gaeta	Gaeta Porto	UB	26	19		20	0		0	0		6442	1	0	0	
RA.	Latina	LT De Chirico	UT	25	16	13	26	0	0.9			0					
T0	Latina	LT Scalo	SB	21	9	9	29	0									
	Latina	LT Tasso	UB	21	6		22	0					5824	3	0	0	
ZONA LITORANEA	Allumiere	Allumiere Aldo Moro	^	17	7	9	4	0		0	0		21445	43	2	0	
	Civitavecchia	Aurelia	<	14	6	-	7	0									
	Civitavecchia	Campo Oro	^	19"	6"	8"	10	0		0	0						
	Civitavecchia	Faro	^	17	7	8	7	0		0	0						
	Civitavecchia	Fiumaretta^	UT	"	8"	"	"	0"	"	0	0	0					
	Civitavecchia	Monte Romano	^	18	8		4	0									

ZONA	COMUNE	NOME	TIPO	P	M_{10}	PM _{2.5}	N	\mathbf{O}_2	BENZENE			CO		O 3	}	
				Media annua valore limite 40 (μg/m³)	Numero di superamenti valore limite giornaliero di 50 µg/m³ max 35	Media annua (μg/m³)	Media annua (µg/m³)	Numero di superamenti di 200 μg/m³	Media annua (µg/m³)	Numero di superamenti valore limite giornaliero di 125 µg/ m³	Numero di superamenti valore limite orario di 350 µg/m³	Numero di superamenti max media mob. su 8	* AOT40 μg/m³*h	** Valore Objettivo (numero di superamenti max media mob. su 8 ore)	Numero di superamenti orari di 180 $\mu g/m^3$	Numero di superamenti orari di 240 μg/m³
	Civitavecchia	S. Agostino	^	17	6	6	4	0		0	0		13778	10	0	0
	Civitavecchia	S. Gordiano	^	22	8		12	0								
	Santa Marinella	Santa Severa	^	21"	8"		9	0					n.d.	n.d.	0	0
	Tolfa	Tolfa Braccianese	^	14	9		5	0								

^{(*):} calcolato come media su 5 anni (2020-2024); (**): calcolato come media su 3 anni (2022-2024); (^): stazione non inclusa nel progetto di rete; ("): la copertura temporale dei dati non è sufficiente a computare gli standard annuali; (n.d.): il valore, ottenuto da una media degli anni precedenti, non è disponibile in quanto la misura dell'O3 presso la centralina in questione è iniziata nel 2024.

5.2 Analisi su filtro: Benzo(a)pirene e Metalli

La normativa sulla qualità dell'aria prevede la determinazione quantitativa della concentrazione di IPA e metalli su filtri di PM campionati in stazioni rappresentative della rete di misura. Di seguito si riportano i dati relativi al 2024, ottenuti dai filtri campionati presso le stazioni della provincia di Rieti, Roma e Frosinone.

Il calcolo della concentrazione media dei campioni analizzati è stato eseguito sostituendo i dati inferiori al limite di rilevabilità (*Limit Of Detection*, LOD) con valori pari a metà del LOD, secondo il criterio di stima medium bound.

5.2.1 IPA

Gli Idrocarburi Policiclici Aromatici (IPA) sono composti organici con due o più anelli aromatici uniti tra loro, formati da carbonio e idrogeno. Tra tutti gli IPA che hanno una nota rilevanza tossicologica e che sono generalmente presenti in aria ambiente, la normativa nazionale di riferimento (D.lgs. n. 155/2010) prende in considerazione il benzo(a)pirene come indicatore dell'andamento di tutta la classe di tali composti. Per il benzo(a)pirene viene individuato un valore obiettivo riferito al tenore totale dell'inquinante presente nella frazione di PM₁₀, e calcolato come media su un anno civile pari ad 1 ng/m³. Nella Tabella 5.7 sono riportati i valori rilevati nel 2024.

Tabella 5.7 - Concentrazione media annua di benzo(a)pirene nel 2024.

	BENZO(A)I	PIRENE	
ZONA	STAZIONE	MEDIA ANNUA (ng/m³) Valore limite 1 ng/m³	N.CAMPIONI
	Cinecittà	0.69	108
AGGLOMERATO DI	Francia	0.33	131
ROMA	Villa Ada	0.33	149
	Ciampino	0.48	126
ZONA	Civitavecchia	0.19	61
LITORANEA	Fiumaretta^		"
	Colleferro Europa	0.8	130
ZONA VALLE	Frosinone Scalo	1.7	123
DEL SACCO	Frosinone Mazzini	0.54	129
	Fontechiari	0.38	60
ZONA APPENNINICA	Rieti	0.76	121

(^): stazione non inclusa nel progetto di rete; ("): la copertura temporale dei dati non è sufficiente a computare gli standard annuali.

Il superamento del valore limite annuale è stato riscontrato esclusivamente nella Zona Valle del Sacco: la centralina Frosinone Scalo ha registrato una concentrazione media annua di benzo(a)pirene pari a 1.7 ng/m³.

5.2.2 Metalli

Il D.lgs. n. 155/2010 prevede un valore limite per il piombo (Pb) e un valore obiettivo per arsenico (As), cadmio (Cd) e nichel (Ni), calcolati come media su un anno civile. Per As, Cd e Ni la norma stabilisce i valori obiettivo di 6 ng/m³, di 5 ng/m³ e di 20 ng/m³, rispettivamente; per il Pb il valore limite di 0.5 μ g/m³.

Le analisi per la determinazione quantitativa della concentrazione elementare dei metalli vengono eseguite a partire da campioni di PM₁₀, opportunamente trattati e analizzati mediante spettrometria di massa a plasma accoppiato induttivamente (*Inductively Coupled Plasma Mass Spectrometry*, ICP-MS).

Nella Tabella 5.8 sono riportati i valori medi annuali per il 2024.

Tabella 5.8 - Concentrazione media annua del 2024 dei metalli.

ZONA	NOME	As	Cd	Ni	Pb	N.CAMPIONI
		Media annua valore obiettivo 6 ng/m³	Media annua valore obiettivo 5 ng/m³	Media annua valore obiettivo 20 ng/m³	Media annua valore limite 0.5 μg/m³	
	Cinecittà	0.23	0.15	1.7	0.0034	69
AGGLOMERATO	Francia	0.46	0.16	2.7	0.0043	60
DI ROMA	Villa Ada	0.28	0.11	1.5	0.0037	74
	Ciampino	0.34	0.15	1.7	0.0041	50
ZONA	Civitavecchia	0.34	0.20	4.3	0.0021	53
LITORANEA	Fiumaretta^	"	"	"	"	cc
	Colleferro Europa	0.39	0.18	1.4	0.0047	58
ZONA VALLE	Frosinone Scalo	0.31	0.13	0.98	0.0033	61
DEL SACCO	Frosinone Mazzini	0.25	0.16	0.94	0.0031	57
	Fontechiari	0.17	0.11	1.4	0.0036	60
ZONA APPENNINICA	Rieti	0.25	0.10	1.5	0.0018	106

^{(^):} stazione non inclusa nel progetto di rete; (*): misura non inclusa nel progetto di rete; ("): la copertura temporale dei dati non è sufficiente a computare gli standard annuali.

In tutte le stazioni di rilevamento le concentrazioni medie annue dei metalli analizzati sono risultate inferiori ai relativi valori limite imposti dal D.lgs. n. 155/2010.

5.3 Caratterizzazione del PM

Nell'ambito delle attività di approfondimento che l'Agenzia svolge a supporto della valutazione della qualità dell'aria e della definizione delle misure di contrasto all'inquinamento, è stata inclusa la caratterizzazione chimica dei campioni di PM e cioè la determinazione quantitativa delle concentrazioni di specifici analiti organici e inorganici che formano l'aerosol atmosferico.

Infatti, sebbene dal punto di vista normativo la concentrazione di massa del PM sia il principale parametro preso in esame per la valutazione della qualità dell'aria, questo indicatore non prende in considerazione le specifiche proprietà fisico-chimiche delle particelle che costituiscono il PM, la cui conoscenza è fondamentale per l'individuazione e la definizione del ruolo e peso delle sorgenti emissive che insistono su un'area. Infatti, com'è noto, il PM è costituito da un insieme di particelle con composizione fortemente eterogenea in termini di dimensioni, origine e composizione chimica che dipende dai diversi contributi delle sorgenti emissive.

Di conseguenza, la conoscenza approfondita della composizione chimica del PM risulta essenziale anche per l'adeguata pianificazione di strategie di controllo e per l'attuazione di specifiche politiche di intervento, al fine di proteggere la salute dei cittadini e di verificare l'efficacia della regolamentazione e del controllo delle emissioni di PM. Tutto ciò assume ulteriore importanza anche alla luce dell'entrata in vigore della Direttiva 2024/2881 sulla qualità dell'aria che pone l'attenzione sulla comprensione dettagliata della composizione chimica del PM.

L'attività è iniziata a marzo 2024 e ha interessato le centraline Rieti, Frosinone Scalo, Cinecittà e Villa Ada. Le prime due sono classificate come urbane da traffico; le ultime due come urbane di fondo. Tuttavia, pur condividendo la classificazione, sono inserite in contesti urbani e geografici piuttosto diversi tra loro e questo si riflette sulla composizione chimica delle polveri campionate.

Sui filtri delle 4 centraline vengono eseguite le analisi prescritte dal D.lgs. n. 155/2010 e, in aggiunta:

- l'analisi in cromatografia ionica per la determinazione quantitativa della concentrazione degli ioni nella frazione solubile del PM e, nello specifico, delle specie inorganiche cationiche e anioniche;
- analisi dello ione ammonio (NH₄⁺), di origine secondaria e tracciante di attività industriale, agricola e zootecnica, ma che, su scala urbana locale, viene emesso anche dal traffico veicolare. L'analisi di inquinanti secondari è di supporto allo studio delle dinamiche di formazione in atmosfera del particolato secondario, può essere utile anche al il monitoraggio degli effetti della riduzione dei precursori primari sulle concentrazioni di PM;
- la determinazione quantitativa della concentrazione elementare di Ag, Al, B, Ba, Be, Co, Cr, Cu, Fe, Mn, Mo, Sb, Se, Sn, Th, Tl, V, Zn;
- l'analisi del levoglucosano (LVG), un anidrozucchero derivante dalla pirolisi della cellulosa e, per questo motivo, considerato un tracciante specifico dei fenomeni di combustione della biomassa, mediante cromatografia ionica.

La Tabella 5.9 presenta le statistiche descrittive delle concentrazioni di composti inorganici e marcatori specifici analizzati nei campioni di PM₁₀ raccolti presso le quattro stazioni di monitoraggio selezionate. Per ciascun analita e per ciascuna centralina sono riportati i valori di media, deviazione standard, minimo e massimo nel periodo marzo–dicembre 2024. I dati evidenziano una variabilità sia tra i diversi composti che tra i siti, a conferma della diversa pressione emissiva e delle caratteristiche urbane dei contesti monitorati. Tra gli elementi più abbondanti si segnalano l'alluminio (Al) e il ferro (Fe), traccianti tipici della componente crostale, con concentrazioni mediamente più elevate nelle stazioni da traffico, dovute verosimilmente al fenomeno di risollevamento attribuibile al passaggio dei veicoli. Sono inoltre ben rappresentati composti di origine antropica come il rame (Cu), lo zinco (Zn), il bario (Ba), i solfati (SO₄²⁻) e il levoglucosano (LVG), indicatore delle combustioni di biomassa. I valori più elevati per alcuni analiti si osservano nelle stazioni di Cinecittà e Villa Ada, riflettendo specifiche peculiarità locali.

Si prevede di incrementare e approfondire le attività di caratterizzazione del PM nel corso del 2025.

Tabella 5.9 - Statistiche descrittive dei composti analizzati nei campioni di PM10 raccolti presso le quattro centraline oggetto di approfondimento.

			Rieti (UT)			FR Scalo (U	J T)			Cinecittà	(UB)		Villa Ada (UB)				
	UDM	Media	Dev.std.	Min	Max	Media	Dev.std.	Min	Max	Media	Dev.std.	Min	Max	Media	Dev.std.	Min	Max
Al	ng/m³	263	487	32	3617	194	394	12	3033	416	835	42	5165	297	340	37	2115
Ba	ng/m³	11	5,5	3,3	37	14	6,3	2,2	26	22	10,3	4,7	52	23	23,3	0,10	168
В	ng/m³	15	8,6	3,6	70	17	7,8	1,0	32	26	13,0	3,6	63	32	42,9	6,5	314
Ca ²⁺	μg/m³	0,29	0,32	0,20	2,9	0,67	0,32	0,20	1,8	0,31	0,20	0,20	0,9	0,27	0,25	0,20	2,0
Cl-	μg/m³	0,41	0,70	0,10	3,3	0,46	0,58	0,10	3,3	0,71	1,13	0,10	7,0	1	1,3	0,10	6,8
Co	ng/m³	0,1	0,1	0,1	1,0	0,55	0,33	0,10	0,78	0,17	0,23	0,10	1,40	0,4	1,3	0,10	9,8
Cr	ng/m³	4	1,3	1,9	8,5	3,1	1,4	0,87	6,5	4,1	1,5	1,20	8,5	6	2,2	0,41	12
Cu	ng/m³	5,9	2,9	1,4	22	12	6,4	2,3	36	17	19,5	0,5	153	17,5	9,4	0,50	46
Fe	ng/m³	319	320	65	2203	403	269	97	1960	599	526	39	3375	552	328	147	1990
K+	μg/m³	0,2	0,1	0,1	0,7	0,54	0,47	0,10	2,1	0,20	0,11	0,10	0,7	0,25	0,21	0,10	1,5
LVG	μg/m³	0,50	0,94	0,05	4,4	1,8	2,5	0,050	10	0,3	0,4	0,050	1,7	0,23	0,43	0,050	2,2
Mn	ng/m³	5,4	5,9	1,5	44	5,7	4,4	1,2	32	9,6	12,9	0,6	90	8,2	6,0	0,69	31
Mo	ng/m³	0,59	0,37	0,10	2,2	0,68	0,35	0,10	1,8	1,11	0,67	0,32	3,3	1,4	2,06	0,10	16
Na+	μg/m³	0,9	0,63	0,10	3,2	0,95	0,66	0,10	2,2	1,08	0,98	0,10	4,8	1,3	0,83	0,28	4,9
NH ₄ +	μg/m³	0,41	0,26	0,20	1,1	2,2	8,4	0,1	55	0,5	0,3	0,20	1,3	0,52	0,37	0,20	1,7
NO ₃ -	μg/m³	2,1	0,58	0,89	3,8	2,1	0,90	1,2	6,8	2,7	0,98	0,1	4,6	2,5	0,69	1,3	4,8
Sb	ng/m³	0,48	0,86	0,10	7,2	0,8	0,45	0,50	2,0	1,0	0,93	0,10	4,8	0,77	0,72	0,10	4,3
Sn	ng/m³	0,7	0,43	0,50	2,3	1,7	0,78	0,50	3,7	2,0	1,44	0,50	7,5	2,2	1,7	0,50	9,0
SO4-	μg/m³	1,4	1,0	0,10	8,1	2,0	2,0	0,46	12	1,5	0,8	0,10	4	1,7	1,0	0,30	5,7
V	ng/m³	1,7	11	0,1	99	0,96	0,88	0,10	5,0	1,24	1,61	0,10	9,2	2,0	7,5	0,10	60
Zn	ng/m³	42	32	4,5	131	51	46	2	223	47	27	13	116	56	35	6,3	157

5.4 Analisi delle serie storiche degli inquinanti

Nei paragrafi che seguono, per ogni zona, vengono presentate e discusse le serie storiche degli standard normativi.

5.4.1 Agglomerato di Roma

L'andamento dei superamenti del valore limite giornaliero di PM₁₀, relativo al quinquennio 2020-2024 (Figura 5.1) non è ancora sistematicamente decrescente e mostra un'evidente variabilità tra gli anni considerati. Tuttavia, particolarmente in alcune stazioni di monitoraggio (es. Malagrotta e Preneste), si evidenzia una tendenza decrescente di fondo. Negli ultimi due anni, nessuna centralina dell'Agglomerato di Roma ha superato il limite in questione.

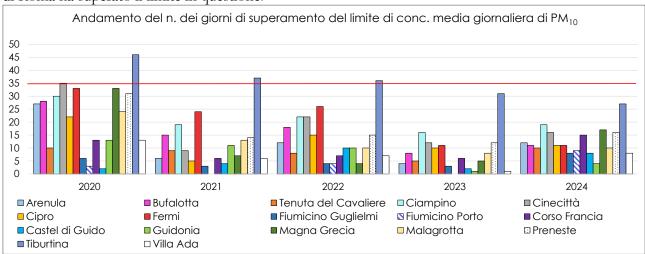


Figura 5.1 - Numero di superamenti del valore limite giornaliero di PM₁₀ nelle stazioni di monitoraggio dell'Agglomerato di Roma, relativi al periodo 2020-2024. In rosso è evidenziato il limite dei 35 giorni di superamento della soglia di 50 $\mu g/m^3$.

La concentrazione media annua dell'NO₂ nell'Agglomerato di Roma rappresenta da diverso tempo un problema di importanza rilevante per la qualità dell'aria. A partire dal 2020 si è osservato un andamento decrescente dell'indicatore in questione. Infatti, il numero delle centraline in superamento è diminuito negli anni.

Considerato il ruolo determinante che il traffico veicolare svolge nella formazione di NO₂, la Figura 5.2 riporta l'andamento della concentrazione media annuale di NO₂ delle centraline fisse di monitoraggio della qualità dell'aria ubicate all'interno del GRA (Grande Raccordo Anulare di Roma).

Come già evidenziato nel paragrafo 5.1.1, nel 2024 solo la stazione Fermi ha registrato una concentrazione media annua di NO₂ superiore al valore limite, e pari a 44 µg/m³ (la stazione Magna Grecia ha registrato un valore di poco inferiore al limite).

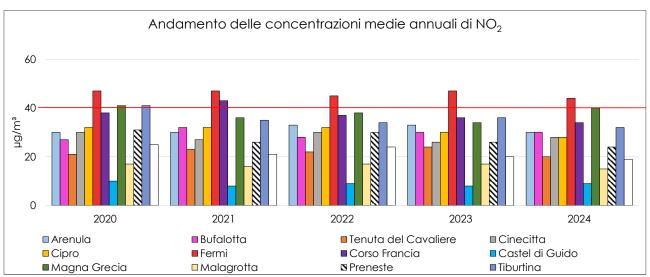


Figura 5.2 – Concentrazione media annua di NO_2 misurata nelle stazioni dell'Agglomerato di Roma comprese nel GRA, relativa al periodo 2020-2024. In rosso è evidenziato il valore limite per la protezione della salute umana, pari a 40 $\mu g/m^3$.

L'ozono troposferico rappresenta da diverso tempo una criticità significativa per l'Agglomerato di Roma. La presenza dell'O₃ è strettamente connessa ai processi fotochimici che avvengono nella troposfera e, quindi, decisamente influenzata dalle condizioni di irraggiamento solare estivo, oltre che dalla concentrazione di inquinanti precursori della sua formazione. Nel grafico seguente (Figura 5.3) viene riportato l'andamento dei superamenti del valore obiettivo per la salute registrati dalle centraline di monitoraggio dell'Agglomerato di Roma dal 2019 al 2024.

Come si riscontra dai grafici, gli andamenti dei superamenti del valore obiettivo sono molto variabili negli anni ed evidentemente legati alla meteorologia che caratterizza la stagione estiva, oltre che alle caratteristiche peculiari della zona in cui è ubicata la stazione di monitoraggio. Per queste ragioni, risulta complesso identificare una tendenza comune a tutte le centraline considerate. Comunque, si sottolinea che, nel triennio 2022-2024, il numero dei giorni di superamento del valore obiettivo, registrato dalla centralina Tenuta del Cavaliere, ha ecceduto il limite legislativo.

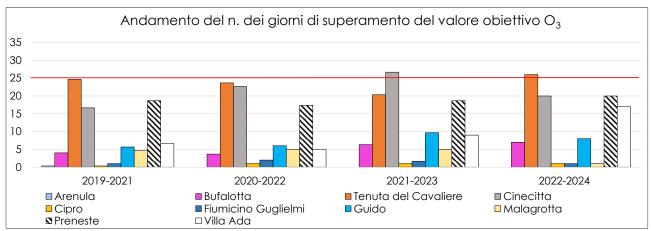


Figura 5.3 - Numero di superamenti di 120 μ g/m³ per l'O₃ (mediato su 3 anni) registrati nelle stazioni dell'Agglomerato di Roma. In rosso è evidenziato il limite dei 25 superamenti.

5.4.2 Zona Valle del Sacco

Negli ultimi anni la concentrazione media annua del PM_{2.5} e del PM₁₀ è rientrata nel limite stabilito dal D.lgs. n. 155/2010.

Sussistono ancora delle criticità relative ai superamenti del valore limite giornaliero del PM₁₀ (Figura 5.4). Nel 2024, 4 centraline su 10 hanno registrato valori decisamente al di sopra del limite dettato dalla norma.

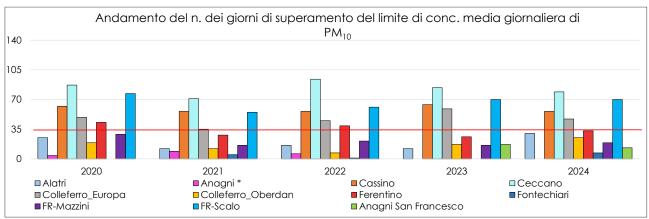


Figura 5.4 - Numero di superamenti del valore limite giornaliero di PM₁₀ nelle stazioni di monitoraggio della Zona V alle del Sacco, relativi al periodo 2020-2024. In rosso è evidenziato il limite dei 35 giorni di superamento della soglia di 50 μ g/m³. *: dal 01/01/23 la centralina Anagni è stata sostituita con Anagni San Francesco, tuttavia è stata inclusa nel grafico ai fini della discussione e per garantire completezza.

5.4.3 Zona Litoranea

Da circa un decennio, la Zona Litoranea è interessata da criticità relative prevalentemente all'ozono. Nello specifico, i valori fuori dai limiti imposti dalla norma vengono generalmente registrati nel Comune di Allumiere, nel quale sono situate due stazioni rurali ad una distanza di circa 500 m s.l.m..

In particolare, è Allumiere Aldo Moro la centralina che negli anni considerati ha ecceduto sia il numero di giorni di superamento di 120 μg/m³ consentiti, sia il limite dettato per l'AOT40. Come precedentemente evidenziato, è impegnativo identificare l'andamento degli indicatori dell'ozono a causa della complessità dei processi fotochimici che portano alla sua formazione, dell'influenza esercitata dalle variabili meteorologiche e della concentrazione e dispersione dei suoi precursori. Infatti, per ovviare alla variabilità intrinseca degli indicatori relativi all'O₃, la norma ne prevede un calcolo mediato su più anni.

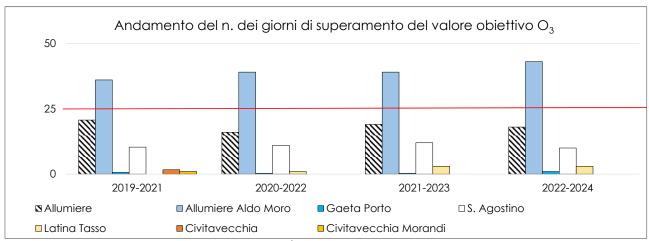


Figura 5.5 - Numero di superamenti di 120 μ g/m³ per l'O₃ (mediato su 3 anni) registrati nelle stazioni della Zona Litoranea. In rosso è evidenziato il limite dei 25 superamenti.

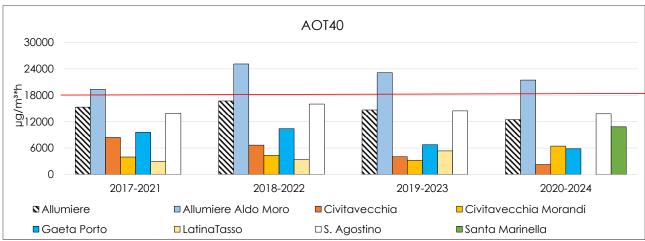


Figura 5.6 - AOT40 - O₃ (mediato su 5 anni) relativo alle stazioni della Zona Litoranea. In rosso è evidenziato il valore obiettivo per la protezione della vegetazione di 18000 μ g/m³*h.

6. Sistema modellistico per la valutazione della qualità dell'aria

Presso il Centro Regionale della Qualità dell'Aria (CRQA) dell'ARPA Lazio è operativo un sistema modellistico per la determinazione della distribuzione spaziale e temporale delle concentrazioni degli inquinanti normati dal D.lgs. n. 155/2010. Il sistema viene utilizzato in modalità sia previsionale che ricostruttiva. In dettaglio:

- ✓ Previsioni di inquinamento atmosferico: sul sito internet dell'Agenzia (nella sezione "Previsioni" del seguente link http://www.arpalazio.net/main/aria/sci/), il CRQA mette quotidianamente a disposizione le previsioni fino a 120 ore (5 giorni) della distribuzione spaziale della concentrazione dei principali inquinanti sul territorio regionale.
- ✓ Ricostruzione dello stato della qualità dell'aria del giorno precedente: quotidianamente il sistema modellistico fornisce, per il giorno precedente, le informazioni necessarie ai fini della verifica del rispetto dei valori limite imposti dal D.lgs. n. 155/2010 su tutto il territorio regionale, a partire dai campi di concentrazione prodotti dalla catena modellistica integrati/combinati con le misure, sia fisse che indicative, mediante tecniche di assimilazione e tecniche statistiche di stima oggettiva. Le informazioni risultanti, disponibili come stime numeriche per ogni Comune del territorio regionale, sono consultabili sul sito internet dell'Agenzia alla sezione "Stato della Qualità dell'Aria>Stime qualità dell'aria" raggiungibile al seguente indirizzo: "http://www.arpalazio.net/main/aria/sci/".

La raccolta delle informazioni menzionate ha come obiettivo generale la comunicazione delle previsioni sull'inquinamento ai cittadini, e delle informazioni per l'attuazione di eventuali azioni a tutela della salute umana necessarie nel caso di previsione di eventi acuti di inquinamento atmosferico agli enti competenti. Oltre quanto appena illustrato, il sistema modellistico viene utilizzato per effettuare:

✓ Valutazione della qualità dell'aria: al termine di ogni anno civile il sistema modellistico viene utilizzato per la verifica del rispetto dei limiti previsti dalla norma di riferimento su tutto il territorio regionale a partire dai campi di concentrazione prodotti dalla catena modellistica integrati/combinati con le misure, sia fisse che indicative, mediante tecniche di assimilazione e tecniche statistiche di stima oggettiva.

In questa sede il sistema è stato utilizzato per la valutazione della qualità dell'aria del 2024, ossia per verificare il rispetto dei limiti di legge attraverso la ricostruzione degli andamenti dei parametri dettati dalla normativa e relativi ai principali inquinanti presenti in atmosfera.

Di seguito viene presentata una descrizione del sistema modellistico e, a seguire, i dettagli dell'analisi effettuata per il 2024.

6.1 La catena modellistica

Le previsioni e ricostruzioni di qualità dell'aria sono realizzate dal sistema modellistico costituito dai seguenti moduli, la cui architettura è illustrata nella Figura 6.1 e strutturata come segue:

- modello meteorologico prognostico WRF per la ricostruzione dei campi meteorologici a scala regionale effettuata a partire dai campi meteorologici a scala globale NCEP forniti da USNOAA;
- modulo di interfaccia per l'adattamento dei campi meteorologici prodotti da WRF sui domini di calcolo di FARM (codice GAP);
- processore meteorologico per la descrizione della turbolenza atmosferica e per la definizione dei parametri dispersivi (codice SURFPRO);

- processore per il trattamento delle emissioni (codice EMMA) da fornire come input al modello Euleriano, a partire dai dati dell'inventario nazionale delle emissioni ISPRA) integrato con le informazioni a scala regionale riferite in particolare alle sorgenti puntuali ed al traffico stradale;
 - condizioni al contorno fornite dal sistema nazionale QualeAria;
- modello Euleriano per la dispersione e le reazioni chimiche degli inquinanti in atmosfera (codice FARM);
- combinazione dei dati osservati con i campi di concentrazione forniti dalla catena modellistica mediante tecniche di *Data Fusion*;
- modulo di post-processing per il calcolo dei parametri necessari alla verifica del rispetto dei limiti di legge (medie giornaliere, medie su 8 ore).

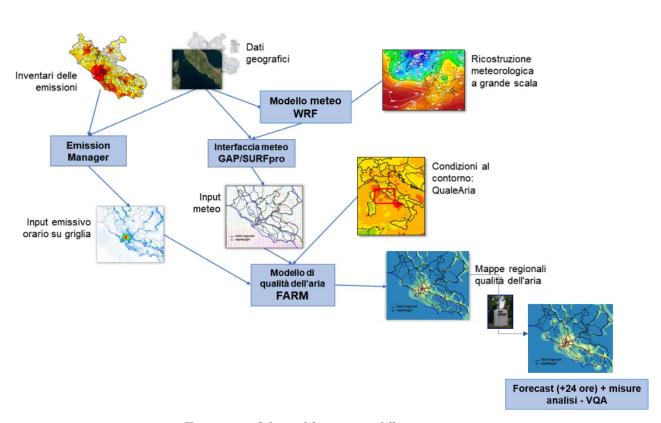


Figura 6.1 - Schema del sistema modellistico.

6.2 Dominio di calcolo

Le caratteristiche generali del dominio di calcolo della catena modellistica utilizzata per la valutazione annuale sono riportate nella tabella sottostante.

Tabella 6.1 - Caratteristiche spaziali del dominio di calcolo.

Dominio	Lazio (244 x 204 km²)
Numero nodi	nx: 244; ny: 204; nz: 16
Angolo SW	x: 686500 - y: 4552500
Risoluzione orizzontale	Campi meteorologici 3km x 3km
Risoluzione orizzontale	Campi di concentrazione: 1km x 1km
Proiezione	UTM32 WGS84
Livelli verticali (m)	10;35;70;120;195;305;465;695;1025;1505;2200;3205;4550;6050;7550;9050

6.3 Trattamento delle emissioni

L'inventario delle emissioni costituisce uno degli strumenti principali per lo studio dello stato attuale di qualità dell'aria, nonché per la definizione dei relativi Piani di tutela e risanamento. Infatti, l'inventario regionale delle emissioni in atmosfera è una raccolta ordinata di tutte le sorgenti d'inquinamento presenti sul territorio (sorgenti industriali, civili, naturali). Pertanto, è considerato lo strumento di conoscenza delle pressioni ambientali che insistono sull'atmosfera e di supporto decisionale per la pianificazione delle politiche ambientali sia su scala regionale che locale.

Nell'ambito delle attività di sistematico approfondimento delle informazioni a supporto della valutazione della qualità dell'aria, l'Agenzia ha realizzato l'aggiornamento dell'inventario delle emissioni in atmosfera della Regione Lazio riferito al 2019, secondo le prescrizioni del D.lgs. n. 155/2010 e ss.mm.ii. e le indicazioni contenute nelle Linee guida EMEP/EEA Guidebook 2019, che forniscono le metodologie di stima ed i fattori di emissione da prendere come riferimento nell'elaborazione.

Nell'aggiornamento relativo all'anno 2019 è stato utilizzato, dove possibile, l'approccio bottom-up, partendo da indicatori comunali reperiti tramite specifiche richieste o disponibili su pubblicazioni statistiche.

L'inventario all'anno 2019 è stato confrontato con l'inventario ISPRA, che ha disaggregato l'inventario nazionale a livello regionale per lo stesso anno.

A titolo di esempio, in Figura 6.2 vengono riportate le emissioni totali su base comunale di NO_x , PM_{10} e $PM_{2.5}$.

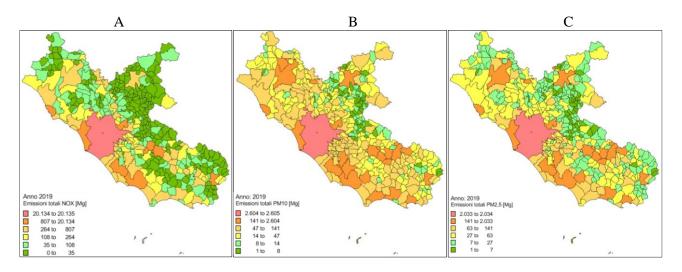


Figura 6.2 – a) emissioni totali di NOx (Mg), b) emissioni totali di PM_{10} (Mg), c) emissioni totali di $PM_{2.5}$ (Mg).

Le emissioni orarie sono calcolate per mezzo del processore EMMA (Emission Manager) che consente la disaggregazione spaziale, la modulazione temporale e la speciazione dei composti organici volatili per i dati degli inventari relativi a sorgenti puntuali, areali e lineari utilizzando la cartografia numerica regionale come informazione di supporto.

Nella valutazione della qualità dell'aria del 2024 è stato utilizzato un inventario delle emissioni aggiornato e riferito all'anno 2019 (che rappresenta l'anno più recente disponibile dell'inventario ISPRA).

Nell'ottica di un sistematico miglioramento dei dati di input del sistema modellistico vengono condotti periodici aggiornamenti in base alle informazioni disponibili, tra le attività attualmente in corso di approfondimento si evidenziano: il processo di revisione della modalità di distribuzione spaziale delle emissioni in atmosfera generate dal riscaldamento domestico, le emissioni del trasporto nell'area urbana di Roma.

6.4 Downscaling e pre-processing meteorologico

I campi meteorologici necessari alla realizzazione della previsione di qualità dell'aria vengono ricostruiti a partire dalle previsioni meteorologiche rese disponibili dal servizio meteorologico degli Stati Uniti d'America (NCEP). I campi meteorologici distribuiti descrivono la dinamica e la termodinamica dell'atmosfera con una risoluzione spaziale orizzontale di circa 1 grado terrestre e con risoluzione temporale di 3 ore. I campi meteorologici alla scala regionale sono dunque ottenuti attraverso l'applicazione del modello meteorologico prognostico non-idrostatico WRF, che realizza la discesa di scala utilizzando un sistema di griglie di calcolo innestate, aventi risoluzioni orizzontali fino a 3 km nel dominio più fine.

A valle del suddetto processo viene utilizzato il processore meteorologico SURFPRO per calcolare i coefficienti di dispersione necessari al modello fotochimico.

6.5 Modello fotochimico per la dispersione degli inquinanti in atmosfera

Il modello utilizzato per la simulazione della dispersione e delle reazioni chimiche degli inquinanti è il codice FARM (Flexible Air quality Regional Model), un modello Euleriano tridimensionale di trasporto e chimica atmosferica multifase, configurabile con diversi schemi chimici (SAPRC99 è lo schema chimico in operativo).

Le condizioni iniziali e al contorno sono costruite a partire dalle previsioni prodotte dal sistema QualeAria, che fornisce in operativo le previsioni degli inquinanti fino a 5 giorni a scala nazionale.

6.6 Integrazione delle misure nel sistema modellistico

Le concentrazioni dei diversi inquinanti ricostruite dal sistema modellistico risultano essere in alcuni casi distanti dalle concentrazioni misurate dalla rete di monitoraggio della qualità dell'aria. Tali incongruenze sono legate a diversi fattori tra cui, la risoluzione spaziale adottata nelle ricostruzioni modellistiche e le emissioni con le quali viene alimentata la catena modellistica.

La risoluzione spaziale del dominio di calcolo è una misura del dettaglio con cui la ricostruzione modellistica riesce a descrivere i complessi fenomeni fisici e chimici che avvengono in atmosfera. In particolare effettuare una simulazione modellistica ad una risoluzione target equivale a trascurare l'insieme dei fenomeni sia meteorologici che chimici caratterizzati da scale spaziali inferiori alla risoluzione target scelta. Appare chiaro, a questo punto, che la scelta ottimale sarebbe un'altissima risoluzione spaziale in modo da comprendere nella ricostruzione delle concentrazioni anche fenomeni fisici che avvengono su scale locali. Di fatto la scelta della risoluzione spaziale non è assolutamente una scelta libera poiché deve essere necessariamente compatibile con il dettaglio delle informazioni con cui viene alimentata la catena modellistica, le emissioni, il land-use e l'orografia. In particolare tanto più la base dati emissiva utilizzata è in grado di selezionare spazialmente la quantità di massa che alimenta il modello di dispersione tanto più sarà possibile effettuare una simulazione modellistica ad elevata risoluzione fisicamente realistica tenendo conto, in ogni caso, dei naturali limiti numerici che tale scelta comporta per le simulazioni con una catena modellistica euleriana.

Nel caso specifico, la simulazione è stata effettuata su un dominio target di 1km x 1km sull'intero territorio regionale.

Con l'obiettivo di ottenere dei campi di concentrazione più vicini alle osservazioni si è ritenuto opportuno combinare/integrare le misure prodotte dalla rete regionale di monitoraggio della qualità dell'aria con i campi di concentrazione prodotti dalla catena modellistica WRF/FARM mediante opportune tecniche di data fusion. Seguendo quanto prodotto in Silibello et al, 2013 (Application of a chemical transport model and optimized data assimilation methods to improve air quality assessment pubblicato su Air Quality, Atmosphere & Health, Vol. 2, 2013) le misure sono state assimilate mediante il metodo delle correzioni successive ottimizzando i parametri che gestiscono l'assimilazione, come la rappresentatività dei punti di misura, correlazione orizzontale, correlazione verticale, in base alle caratteristiche dei singoli inquinanti e delle singole misure.

Una delle criticità dell'assimilazione dati è legata al numero ed alla localizzazione delle misure disponibili da integrare con il campo di concentrazione prodotto dal modello. Un numero di punti di misura limitato può notevolmente influire sul campo di concentrazione in modo da sbilanciare la distribuzione spaziale producendo delle incongruità fisico/chimiche non compatibili con la situazione realistica che si vuole ricostruire. Pertanto, limitatamente al PM₁₀, si è deciso di combinare i campi di concentrazione con le misure prodotte dalle numerose campagne sperimentali effettuate nel 2024, e negli anni precedenti, su tutto il territorio regionale mediante l'utilizzo del laboratorio mobile o strumenti da campo.

Tali campagne, sebbene siano state realizzate rispettando i requisiti di durata richiesti dal D.lgs. n. 155/2010, sono per loro natura discontinue e limitate nel tempo, tipicamente 2 mesi di cui uno nel periodo estivo ed uno nel periodo invernale.

Poiché le campagne di misura non coprono l'intero arco annuale, che è il requisito necessario per poter effettuare l'integrazione di tali dati con il sistema modellistico è stato effettuato un passaggio intermedio finalizzato a ricostruire, mediante un metodo di stima oggettiva, la serie annuale di concentrazione di PM10 per ogni singola campagna di misura a partire dalle misure discontinue della campagna in oggetto e dalle misure della rete fissa di monitoraggio. La tecnica statistica utilizzata è descritta in Sozzi et al., 2017 (Quality control and gap-filling of PM10 daily mean concentrations with the best linear unbiased estimator. Environ. Monit. Assess. (2017) 189:562) e in Sozzi et al., 2013 (Stimatore statistico lineare per la stima della concentrazione media giornaliera di PM10, BEA-UNIDEA, 2013/03).

L'applicazione dello stimatore statistico fornisce, per ogni campagna di misura, una serie storica costituita dalle misure reali (per tutti i giorni in cui il mezzo è presente nel sito considerato) e dalle stime statistiche (per tutti i giorni in cui il mezzo mobile era assente). Si è dunque applicata la procedura sopra descritta

per ottenere delle "stazioni virtuali" nei punti in cui è stato effettuato un monitoraggio nel 2024 (8 siti) o negli anni precedenti (15 siti) per un sufficiente periodo di copertura e che comprendesse almeno una campagna nel periodo invernale. I siti utilizzati, dove sono state effettuate nel 2024 campagne di misura, vengono riportati in Tabella 6.2.

I valori ricostruiti con lo stimatore lineare BLUE sono poi stati utilizzati nella procedura di assimilazione per ottenere delle stime più aderenti alla realtà.

Località	Latitudine	Longitudine
Arce	41.58775	13.56983184
Atina	41.62528	13.79914365
Boville Ernica	41.65437	13.46292406
Ladispoli	41.95495	12.06988
Monte San Giovanni Campano	41.64783	13.5457271
Pontecorvo	41.45377	13.6624561
Sonnino	41.41451	13.24414350
Veroli	41.66423	13.43149302

Tabella 6.2 - Campagne monitoraggio 2024 utilizzate per la valutazione della qualità dell'aria.

Applicando la procedura statistica, nel caso in cui una campagna sperimentale con il mezzo mobile venga ripetuta periodicamente, anno dopo anno e nello stesso punto del territorio, si può ottenere la gerarchia di quadruple delle postazioni slave ed i relativi pesi riferita a una statistica multianno. Ciò comporta che è di fatto possibile attivare la procedura sopra descritta per ricostruire la serie storica relativa al sito considerato, che verrà mantenuta sempre attiva fornendo costantemente una stima di concentrazione media giornaliera. Ogni anno è possibile riaggiornare la gerarchia delle postazioni slave ed i relativi pesi per tener conto di eventuali variazioni nel quadro emissivo e delle variazioni del quadro meteorologico. Il risultato netto sarà che pur non avendo aggiunto nuove postazioni fisse alla rete di monitoraggio regionale, nei fatti ad essa si aggiungeranno tante postazioni virtuali quanti saranno i siti sedi delle campagne sperimentali periodiche con i mezzi mobili incrementando notevolmente le informazioni disponibili per la valutazione della qualità dell'aria del territorio. Nella regione Lazio è stato realizzato un piano di monitoraggio periodico con i mezzi mobili allo scopo di aggiungere alla rete fissa di monitoraggio delle postazioni virtuali localizzate in punti del territorio in cui è necessario incrementare l'informazione della qualità dell'aria.

In sintesi la valutazione della qualità dell'aria sul territorio regionale deriva dalla distribuzione spaziale della concentrazione degli inquinanti ottenuti dall'assimilazione dei campi di concentrazione forniti dal sistema modellistico con i dataset seguenti:

- ✓ Misure orarie o giornaliere, nel caso del PM₁0 e del PM₂.5, fornite da tutte le stazioni della rete regionale fissa di monitoraggio della qualità dell'aria;
- ✓ Limitatamente al PM₁0, ricostruzione delle concentrazioni giornaliere effettuate a partire dalle campagne di misura condotte con il Laboratorio mobile mediante la tecnica di stima oggettiva BLUE.

7. Valutazione della qualità dell'aria del 2024

La valutazione della qualità dell'aria è l'elemento base per la verifica del rispetto dei valori limite previsti dal D.lgs. n. 155/2010 attuata mediante "l'utilizzo dei metodi stabiliti dal presente decreto per misurare, calcolare, Valutazione della qualità dell'aria - 2024

Pagina 54 di 79

stimare o prevedere i livelli degli inquinanti". I metodi stabiliti dalla norma fanno riferimento a diversi strumenti di controllo della qualità dell'aria: la gestione della rete fissa di monitoraggio, le misure indicative effettuate tramite laboratori mobili (per loro natura discontinue nel tempo), l'applicazione di metodi statistici di stima oggettiva e l'utilizzo di catene modellistiche in grado di spazializzare la concentrazione degli inquinanti. L'integrazione dei suddetti elementi, così profondamente differenti tra loro, è l'obiettivo che ci si è posti per effettuare una valutazione della qualità dell'aria che tenesse in considerazione sia dell'intrinseca precisione delle misure sperimentali sia delle capacità descrittive di un modello di simulazione.

Appare chiaro che l'unico strumento per poter determinare i livelli di concentrazione su tutto il territorio di cui si dispone sia un sistema modellistico che, a partire dalle caratteristiche meteorologiche, micro meteorologiche, orografiche ed emissive del territorio, sia in grado di ricostruire la dispersione, le trasformazioni chimiche (sia in fase gassosa che solida) delle sostanze che vengono immesse (e delle sostanze che risiedono) in atmosfera. D'altra parte, è necessario sfruttare le notevoli informazioni, sia in termini di precisione che accuratezza, che una serie di punti di misura, fissi o mobili, sono in grado fornire anche se solo in un numero limitato di punti del territorio.

Alla luce di quanto appena detto, si è deciso di combinare le misure sperimentali effettuate tramite la rete fissa e il sistema modellistico, tramite tecniche di assimilazione in modo da conservare le capacità descrittive del sistema modellistico introducendo, nel sistema stesso, le informazioni prodotte dalla rete di monitoraggio tramite tecniche di assimilazione. Relativamente alle misure indicative di PM₁₀ effettuate con il mezzo mobile ovvero strumenti da campo, a causa della loro intrinseca criticità legata alla scarsa copertura temporale, sono state sfruttate impiegando un metodo statistico di stima oggettiva per ricostruire la serie temporale annuale a partire dalle poche osservazioni svolte e dalle misure della rete fissa.

Il risultato dell'integrazione degli strumenti previsti dalla norma ha permesso di ottenere delle mappe di concentrazione dei diversi inquinanti più realistiche possibili.

7.1 Distribuzione spaziale della concentrazione di PM10

Di seguito è riportata la mappa di concentrazione media annua del 2024 di PM₁₀ nel territorio regionale e due ingrandimenti della mappa sulle aree di Roma e della Valle del Sacco.

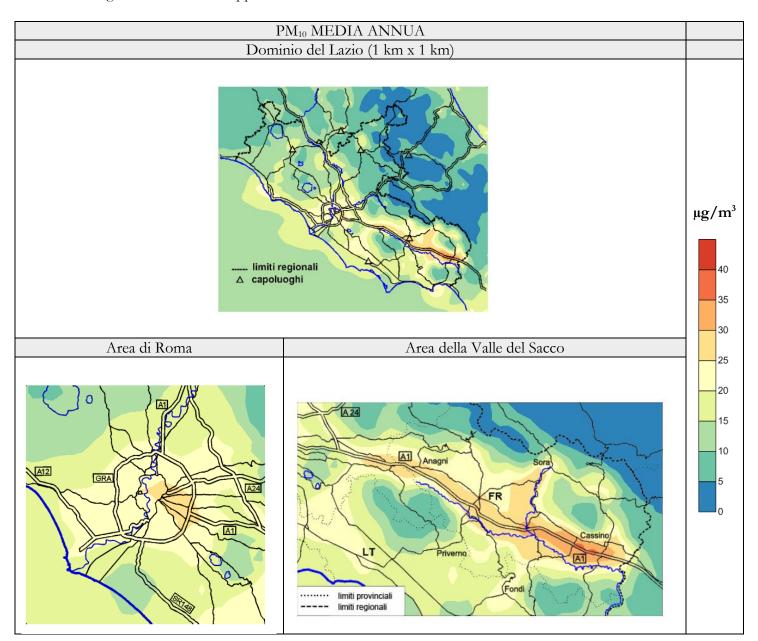


Figura 7.1 - Distribuzione spaziale della media annua di PM₁₀ nel 2024.

Il PM₁₀ si accumula prevalentemente nelle zone Valle del Sacco e Agglomerato di Roma. La Zona Valle del Sacco (Figura 7.1, in basso a destra) presenta dei valori di concentrazione elevati, tuttavia non superiori al limite di 40 μg/m³. L'Agglomerato (Figura 7.1, in basso a sinistra) e la Zona Litoranea, nonostante il carico emissivo che le caratterizza, beneficiano della vicinanza con la costa che garantisce una buona dispersione degli inquinanti mentre la Zona Appenninica è caratterizzata da un'emissione più moderata di polveri.

La distribuzione spaziale del numero di superamenti del valore limite di 50 µg/m³ (Figura 7.2) risulta maggiormente critica nella Zona Valle del Sacco, tanto da eccedere il numero massimo di superamenti consentiti.

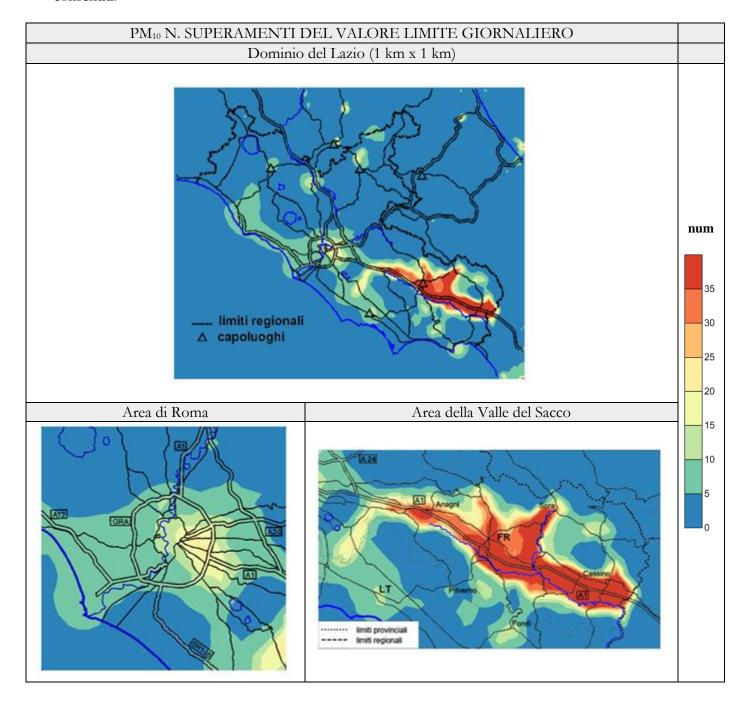


Figura 7.2 - Distribuzione spaziale del numero di superamenti di 50 μ g/m³ di PM₁₀ nel 2024.

7.2 Distribuzione spaziale della concentrazione di PM2.5

In Figura 7.3 è riportata la distribuzione spaziale della concentrazione media annuale di PM_{2.5} del 2024 nel territorio regionale e due ingrandimenti della mappa sulle aree di Roma e della Valle del Sacco.

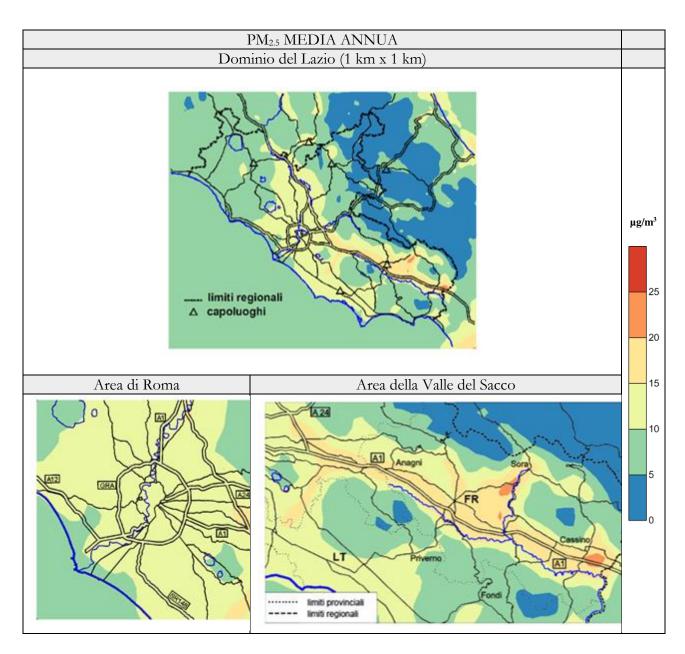


Figura 7.3 - Distribuzione spaziale della media annua di PM_{2.5} nel 2024..

La distribuzione spaziale della concentrazione media annua di $PM_{2.5}$ presenta valori più elevati nella Valle del Sacco (Figura 7.3, in basso a destra) distribuiti in modo disomogeneo nel territorio e comunque al di sotto del limite normativo di $25 \,\mu\text{g/m}^3$.

7.3 Distribuzione spaziale della concentrazione di NO2

Di seguito viene riportata la distribuzione della media annuale di NO₂ nel territorio regionale e due ingrandimenti della mappa sulle aree di Roma e della Valle del Sacco.

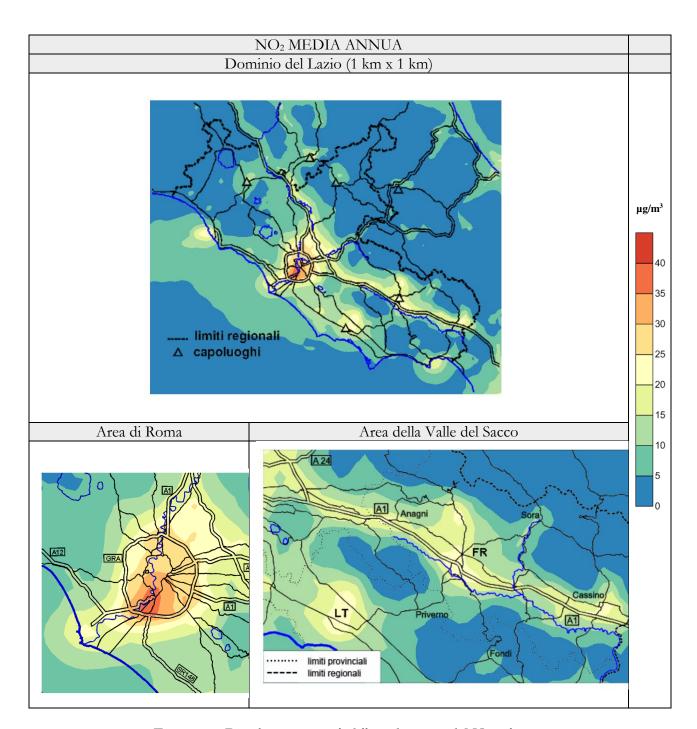


Figura 7.4 - Distribuzione spaziale della media annua di NO2 nel 2024.

La Zona Valle del Sacco e l'Agglomerato di Roma presentano dei valori di concentrazione di NO₂ più elevati rispetto al resto del territorio regionale. La situazione più critica si registra nell'Agglomerato di Roma, in particolare nell'area metropolitana di Roma.

Nel comune di Roma (Figura 7.4, in basso a sinistra), le criticità più significative interessano gran parte dell'area urbana con particolare riferimento alle aree interne al Gran Raccordo Anulare. Le concentrazioni medie annuali sono inferiori nelle aree verdi urbane, a ovest della città, la riserva dell'Insugherata, il parco naturale della Tenuta dei Massimi e il parco dell'Appia Antica.

Nella Valle del Sacco si osservano le concentrazioni maggiori presso i centri urbani più densamente popolati lungo l'autostrada A1.

7.4 Distribuzione spaziale della concentrazione di O3

Relativamente all'ozono, in Figura 7.5 viene riportata la distribuzione spaziale del numero di superamenti del limite di 120 µg/m³, calcolato come massimo della media mobile delle 8 ore, nel territorio regionale e due ingrandimenti della mappa sulle aree di Roma e della Valle del Sacco.

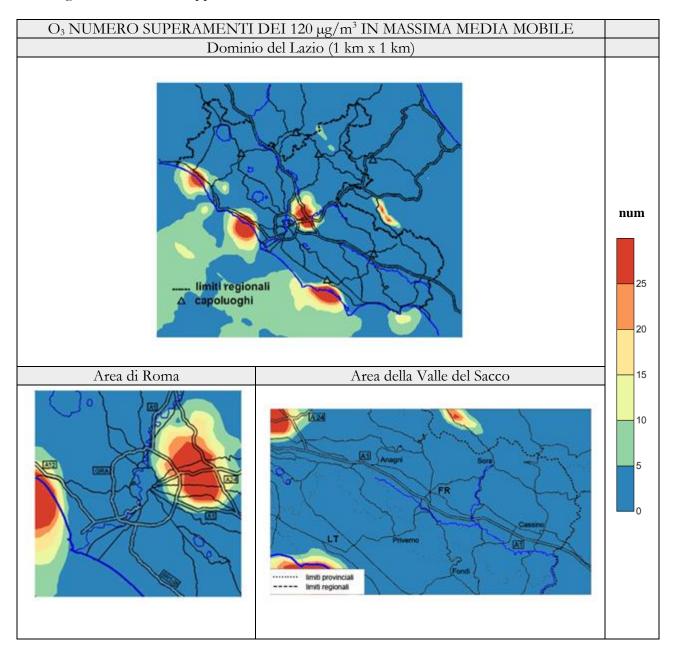


Figura 7.5 - Distribuzione spaziale del numero di superamenti di 120 μ g/m³ (max della media di 8 ore) di O₃ nel 2024

Si osservano superamenti del valore limite di $120 \,\mu g/m^3$ nell'area a est dell'Agglomerato di Roma e lungo la Zona Litoranea.

7.5 Distribuzione spaziale della concentrazione di C6H6

La distribuzione media annua della concentrazione di benzene evidenzia i valori maggiori in corrispondenza di alcuni centri abitati (Figura 7.6).

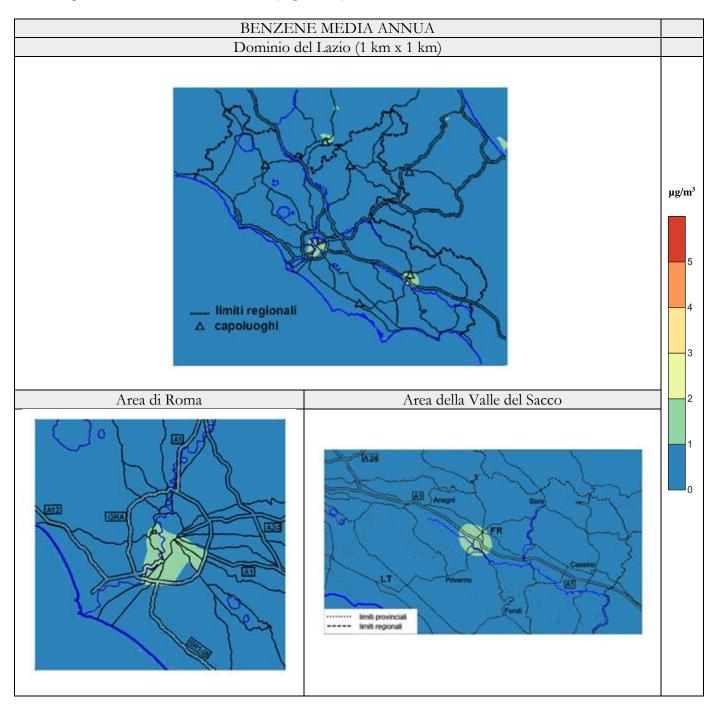


Figura 7.6 - Distribuzione spaziale della media annua di benzene nel 2024.

Le concentrazioni medie più elevate si osservano in corrispondenza dei centri abitati di Frosinone e Roma. Tuttavia, i valori sono al di sotto del limite normativo e non eccedono i $2 \mu g/m^3$.

7.6 Caratterizzazione comunale dello stato della qualità dell'aria

Una volta effettuata la valutazione della qualità dell'aria nel territorio regionale, si procede con la caratterizzazione dello stato della qualità dell'aria di ogni comune. Di seguito si riportano alcune considerazioni relative alla risoluzione del sistema modellistico.

Il modello di dispersione, come riportato nei paragrafi precedenti, fornisce il campo di concentrazione dei diversi inquinanti sull'intero territorio regionale con una risoluzione di 1 km². La risoluzione di un modello equivale a una discretizzazione dello spazio all'interno del quale calcolare i campi di concentrazione. Ciò significa che il modello è in grado di fornire i valori medi orari di concentrazione su celle di dimensioni pari alla risoluzione orizzontale a partire dai quali vengono poi calcolati gli standard di legge riportati nei paragrafi precedenti. In generale, l'estensione spaziale dei comuni nel territorio laziale è superiore alla risoluzione orizzontale della simulazione modellistica, ciò implica che la superficie comunale sia discretizzata in un numero elevato di celle, ognuna caratterizzata da un determinato valore di concentrazione.

Al fine di caratterizzare lo stato di qualità dell'aria rappresentativo del comune, e in assenza di indicazioni normative o di linee guida tecniche, è necessario definire, per ogni inquinante, quale valore di concentrazione considerare tra quelli delle diverse celle che costituiscono la superficie amministrativa del comune.

A questo riguardo sono state inizialmente valutate due ipotesi:

- 1) la media pesata delle celle (o frazioni) comprese nell'area del comune in funzione della percentuale di superficie della cella ricadente nel perimetro del Comune;
- 2) il valore massimo tra le celle (o frazioni) ricomprese nell'area del comune calcolato secondo la metodologia di seguito descritta.

Per scegliere è necessario definire cosa si intende per superamento di un comune: si è deciso di considerare come superamenti tutti i valori di concentrazione sopra i valori limite per almeno 1 km² di territorio (unità elementare con maggiore risoluzione del dominio).

In base al principio di precauzione il parametro utilizzato è il valore massimo sul comune. Per ogni comune il valore rappresentativo dello standard è il massimo dello standard sulla superfice del comune se questo valore è relativo ad una cella intera. Altrimenti, se il valore massimo è relativo a una frazione di cella, si considera il valore più elevato tra le restanti celle o frazioni di celle che costituiscono la superfice del comune, questo sarà il valore rappresentativo per il comune se la somma della sua area e quella della frazione di cella è maggiore di 1 km².

Il comune è in superamento se questo massimo è superiore al valore limite imposto dalla norma.

Sempre in accordo con il principio di precauzione, ai fini della valutazione del rispetto del valore limite, nei casi in cui ci sia una differenza tra le informazioni restituite dal modello e quelle ottenute dalle misure della rete fissa, si utilizza il valore peggiore.

Per completezza, nell'allegato al presente documento vengono comunque riportati anche i valori minimi e medi (pesati) di concentrazione stimati per ogni singolo comune, le aree di superamento e la popolazione esposta². Il confronto tra i valori medi e i massimi degli standard è utile a valutare se gli eventuali superamenti riguardino solo una piccola porzione di territorio o l'intero territorio comunale. Nei paragrafi seguenti vengono riportate le caratterizzazioni in base alla valutazione dello stato della qualità dell'aria del 2024, per ogni comune delle quattro zone in cui è suddiviso il territorio del Lazio. Nella Tabella 7.1 è riportata la descrizione dei parametri contenuti nelle Tabelle 7.2 – 7.5.

-

² Si prevede di aggiornare nel corso del 2025 la distribuzione della popolazione sul territorio utilizzando i dati delle sezioni di censimento.

Tabella 7.1 - Descrizione dei parametri.

Inquinante	Parametro	Descrizione
DM	Media	Media annua (μg/m³)
PM_{10}	Superamenti	Numero di superamenti giornalieri di 50 μg/m³
$\mathrm{PM}_{2.5}$	Media	Media annua (μg/m³)
NO_2	Media	Media annua (μg/m³)
$1NO_2$	Superamenti	Numero di superamenti orari di 200 μg/m ³
C ₆ H ₆	Media	Media annua (μg/m³)
CO	Superamenti	Numero di superamenti di 10 mg/m³ della media mobile massima su 8
CO	Superamenu	ore
SO_2	Superamenti	Numero di superamenti giornalieri di 125 μg/m³
O_3	Superamenti	Numero di superamenti giornalieri di 120 μg/m³ (media su 3 anni)

7.6.1 Agglomerato di Roma

In Tabella 7.2 è riportata la caratterizzazione di ogni comune dell'Agglomerato di Roma, in base alla valutazione dello stato della qualità dell'aria del 2024 (i superamenti dei valori limite sono riportati in rosso).

Tabella 7.2 - Caratterizzazione della qualità dell'aria dei comuni dell'Agglomerato di Roma.

IT1219 AGGLOMERATO ROMA												
iz	'ΑΤ	4)	n^2)	PN	I_{10}	PM _{2.5}	N	O ₂	C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	Cod. ISTAT	Nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
RM	12058003	Albano Laziale	23,9	21	7	15	17	0	0	0	0	1
RM	12058005	Anguillara Sabazia	65	15	1	12	10	0	0	0	0	2
RM	12058009	Ariccia	18,2	20	6	14	14	0	0	0	0	0
RM	12058015	Campagnano di Roma	46,1	15	2	12	11	0	0	0	0	1
RM	12058018	Capena	29,5	21	8	16	20	0	0	0	0	7
RM	12058022	Castel Gandolfo	14,6	20	7	13	14	0	1	0	0	3
RM	12058024	Castelnuovo di Porto	30,8	21	4	16	19	0	0	0	0	7
RM	12058118	Ciampino	11	25	19	16	27	0	1	0	0	8
RM	12058036	Fiano Romano	41,8	19	5	16	22	0	0	0	0	5
RM	12058120	Fiumicino	213,4	29	13	13	26	0	0	0	0	30
RM	12058122	Fonte Nuova	20,2	21	9	13	27	0	0	0	0	20
RM	12058038	Formello	31,4	18	2	14	15	0	1	0	0	3
RM	12058039	Frascati	22,7	28	18	16	25	0	1	0	0	12
RM	12058046	Grottaferrata	18,2	23	13	15	18	0	1	0	0	3
RM	12058047	Guidonia Montecelio	78,8	26	14	13	25	0	1	0	0	36

IT1219 AGGLOMERATO ROMA												
13	AT		1 ²)	PN	I_{10}	PM _{2.5}	N	O_2	C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	Cod. ISTAT	Nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
RM	12058057	Marino	25,1	25	11	15	23	0	1	0	0	4
RM	12058059	Mentana	24,1	22	5	14	27	0	1	0	0	12
RM	12058064	Monte Porzio Catone	9,4	24	11	15	16	0	0	0	0	2
RM	12058065	Monterotondo	40,5	22	8	16	28	0	1	0	0	15
RM	12058068	Morlupo	24	15	2	13	11	0	0	0	0	4
RM	12058081	Riano	24,9	19	2	15	20	0	0	0	0	10
RM	12058086	Rocca di Papa	40	19	6	14	11	0	0	0	0	2
RM	12058091	Roma	1307,7	31	29	16	42	0	1	0	0	49
RM	12058093	Sacrofano	28,5	17	1	13	14	0	0	0	0	3
RM	12058098	Sant'Angelo Romano	21,5	24	8	12	21	0	0	0	0	12
RM	12058104	Tivoli	68,4	25	13	13	25	0	1	0	0	25

^(**) –calcolato come media su 3 anni $\overline{(2022-2024)}$.

Le criticità nell'Agglomerato di Roma sono relative a NO2 e O3. Nello specifico:

- la concentrazione media annuale di NO₂ è superiore al valore limite di 40 μg/m³ nel comune di Roma ed è pari a 42 μg/m³;
- il numero di superamenti dell'O₃, come massimo della media mobile di 8 ore dei 120 μg/m³ e mediato sul triennio 2022-2024, eccede il valore consentito dalla norma (25 superamenti annui) a Fiumicino, a Guidonia Montecelio e a Roma (30, 36 e 49 superamenti, rispettivamente).

7.6.2 Zona Valle del Sacco

In Tabella 7.3 è riportata la caratterizzazione di ogni comune della Zona Valle del Sacco, in base alla valutazione dello stato della qualità dell'aria del 2024 (i superamenti dei valori limite sono riportati in rosso).

Tabella 7.3 - Caratterizzazione della qualità dell'aria dei comuni della Valle del Sacco.

	IT1217 ZONA VALLE DEL SACCO												
	Т			PN	I_{10}	PM _{2.5}	N	O ₂	C_6H_6	CO	SO ₂	**O ₃	
Provincia	Cod. ISTAT	Nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi	
FR	12060002	Acuto	13,4	18	5	11	10	0	0	0	0	1	
FR	12060003	Alatri	97,2	27	52	18	29	0	1	0	0	1	
FR	12060005	Amaseno	77,2	23	24	12	8	0	0	0	0	0	
FR	12060006	Anagni	113,8	32	48	19	32	0	2	0	0	2	
FR	12060007	Aquino	19,2	40	90	20	25	0	0	0	0	1	

		IT1217 ZON	NA VA	LLE I	DEL S	SACCO)					
	П			PN	I_{10}	PM _{2.5}	N	O_2	C_6H_6	CO	SO_2	**O ₃
Provincia	Cod. ISTAT	Nome	Area (km²)	media	superi	media	media	superi	media	ਸ਼ਰੀns	ਸ਼ਰੀns	superi
FR	12060008	Arce	39,5	34	62	20	21	0	0	0	0	2
FR	12060009	Arnara	12,3	31	59	18	26	0	1	0	0	0
FR	12060010	Arpino	56	28	46	19	9	0	0	0	0	9
FR	12060012	Ausonia	20,1	14	1	10	7	0	0	0	0	0
FR	12060014	Boville Ernica	28,2	28	43	20	11	0	0	0	0	1
FR	12060015	Broccostella	12	22	21	16	8	0	0	0	0	11
RM	12058020	Carpineto Romano	86,4	12	0	8	7	0	0	0	0	1
FR	12060018	Casalvieri	27,2	23	24	14	5	0	0	0	0	5
FR	12060019	Cassino	82,8	37	76	23	33	0	0	0	0	3
FR	12060020	Castelliri	15,5	31	59	22	11	0	0	0	0	2
FR	12060021	Castelnuovo Parano	10	16	5	10	7	0	0	0	0	0
FR	12060023	Castro dei Volsci	58,3	30	61	18	15	0	1	0	0	0
FR	12060022	Castrocielo	27,9	38	82	20	24	0	0	0	0	1
RM	12058026	Cave	17,7	21	7	15	13	0	0	0	0	1
FR	12060024	Ceccano	60,5	32	69	19	26	0	1	0	0	0
FR	12060025	Ceprano	38	37	67	21	28	0	0	0	0	0
FR	12060026	Cervaro	39,2	29	61	21	20	0	0	0	0	1
FR	12060027	Colfelice	14,2	32	59	18	20	0	0	0	0	2
RM	12058034	Colleferro	27,6	32	42	19	27	0	0	0	0	2
FR	12060028	Collepardo	25	20	12	10	16	0	0	0	0	0
RM	12058035	Colonna	3,5	20	7	16	17	0	0	0	0	3
FR	12060030	Coreno Ausonio	26	12	0	10	5	0	0	0	0	1
FR	12060031	Esperia	108,8	25	35	15	9	0	0	0	0	1
FR	12060032	Falvaterra	12,8	28	43	13	10	0	0	0	0	0
FR	12060033	Ferentino	80,6	28	39	19	24	0	1	0	0	1
FR	12060036	Fontana Liri	16	26	33	16	10	0	0	0	0	5
FR	12060037	Fontechiari	16,2	17	7	13	6	0	0	0	0	11
FR	12060038	Frosinone	47	34	67	21	27	0	1	0	0	1
FR	12060039	Fumone	14,8	23	17	14	17	0	0	0	0	1
RM	12058040	Gallicano nel Lazio	26	24	13	17	20	0	0	0	0	11
RM	12058041	Gavignano	14,9	28	45	17	16	0	0	0	0	2
RM	12058042	Genazzano	32,1	24	16	16	14	0	0	0	0	1
FR	12060041	Giuliano di Roma	34	21	12	11	12	0	1	0	0	0
RM	12058045	Gorga	26,4	13	3	8	5	0	0	0	0	1
FR	12060043	Isola del Liri	16,2	32	60	23	14	0	0	0	0	3
RM	12058049	Labico	11,8	24	11	18	23	0	0	0	0	1
RM	12058060	Monte Compatri	24,3	22	9	15	16	0	1	0	0	34

		IT1217 ZON	NA VA	LLE I	DEL S	SACCO						
	Н			PN	Λ_{10}	$PM_{2.5}$	N	O_2	C_6H_6	CO	SO_2	**O ₃
Provincia	Cod. ISTAT	Nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
FR	12060044	Monte San Giovanni Campano	48,6	32	60	23	14	0	0	0	0	2
RM	12058062	Montelanico	35	21	20	13	8	0	0	0	0	2
FR	12060045	Morolo	26,5	26	37	19	15	0	1	0	0	1
RM	12058073	Olevano Romano	26,1	18	3	13	10	0	0	0	0	1
RM	12058074	Palestrina	47,1	22	10	17	21	0	0	0	0	3
FR	12060046	Paliano	70,1	33	45	18	25	0	0	0	0	2
FR	12060047	Pastena	42	29	40	10	6	0	0	0	0	0
FR	12060048	Patrica	27	28	47	17	21	0	2	0	0	1
FR	12060051	Pico	32,7	28	38	13	10	0	0	0	0	1
FR	12060052	Piedimonte San Germano	17,4	38	81	20	23	0	0	0	0	1
FR	12060053	Piglio	35,2	19	9	13	9	0	0	0	0	1
FR	12060054	Pignataro Interamna	24,6	35	73	21	17	0	0	0	0	0
FR	12060055	Pofi	30,7	31	60	19	23	0	1	0	0	0
FR	12060056	Pontecorvo	88,2	33	65	18	25	0	0	0	0	1
FR	12060057	Posta Fibreno	9,1	18	11	14	5	0	0	0	0	8
FR	12060058	Ripi	31,4	27	38	19	21	0	1	0	0	0
FR	12060059	Rocca d'Arce	11,5	21	11	10	8	0	0	0	0	4
RM	12058088	Rocca Priora	28	17	5	14	13	0	0	0	0	2
FR	12060060	Roccasecca	43,3	35	72	20	23	0	0	0	0	2
FR	12060070	San Cesareo	27,1	22	35	18	16	0	0	0	0	0
RM	12058119	San Giorgio a Liri	22,7	23	9	18	23	0	0	0	0	10
FR	12060063	San Giovanni Incarico	15,5	25	41	15	10	0	0	0	0	0
FR	12060064	San Vittore del Lazio	24,9	31	59	18	14	0	0	0	0	1
FR	12060065	Sant'Ambrogio sul Garigliano	9	20	29	16	9	0	0	0	0	0
FR	12060066	Sant'Andrea del Garigliano	16,9	16	14	13	6	0	0	0	0	1
FR	12060067	Sant'Apollinare	17	24	48	18	10	0	0	0	0	0
FR	12060068	Sant'Elia Fiumerapido	41	25	30	18	16	0	0	0	0	4
FR	12060069	Santopadre	21,5	17	10	9	4	0	0	0	0	3
RM	12058102	Segni	61,3	30	49	18	21	0	0	0	0	2
FR	12060071	Serrone	15,4	16	2	11	7	0	0	0	0	1
FR	12060073	Sgurgola	19,3	24	32	16	15	0	1	0	0	1
FR	12060074	Sora	71,8	29	57	22	17	0	0	0	0	26
FR	12060075	Strangolagalli	10,5	30	53	21	12	0	0	0	0	1
FR	12060076	Supino	35,3	28	39	20	19	0	1	0	0	1
FR	12060079	Torrice	18,2	27	49	17	17	0	1	0	0	1
FR	12060082	Vallecorsa	39,7	22	7	9	5	0	0	0	0	0
FR	12060083	Vallemaio	19,5	14	3	9	5	0	0	0	0	1

		IT1217 ZON	VA VA	LLE I	DEL S	SACCO						
	L			PN	I_{10}	PM _{2.5}	N	O_2	C_6H_6	CO	SO_2	**O ₃
Provincia	Cod. ISTAT	Nome	Area (km²)	media	nedns	media	media	nedns	media	nedns	nedns	superi
RM	12058110	Valmontone	40,7	30	38	20	29	0	0	0	0	1
FR	12060085	Veroli	120,3	27	42	19	16	0	1	0	0	1
FR	12060086	Vicalvi	8,2	16	8	12	5	0	0	0	0	4
FR	12060087	Vico nel Lazio	45,8	25	33	16	19	0	0	0	0	1
FR	12060089	Villa Santa Lucia	18,2	38	82	21	23	0	0	0	0	1
FR	12060090	Villa Santo Stefano	20,3	21	16	11	10	0	1	0	0	0
RM	12058114	Zagarolo	29	25	15	18	20	0	0	0	0	19

(**) -calcolato come media su 3 anni (2022-2024).

Le criticità della Zona Valle del Sacco sono legate al PM₁₀ e all'O₃. Nello specifico:

- il numero massimo di superamenti della concentrazione di PM₁₀ è maggiore del limite consentito dalla norma (35 annui) in 44 degli 86 comuni inclusi nella zona in questione;
- il numero di superamenti dell'O₃, come massimo della media mobile di 8 ore dei 120 μg/m³ e mediato sul triennio 2022-2024, eccede il valore consentito dalla norma (25 superamenti annui) a Monte Compatri e a Sora (n. 34 e 26 superamenti, rispettivamente).

7.6.3 Zona Appenninica

Nella tabella seguente è riportata la caratterizzazione di ogni comune della Zona Appenninica, in base alla valutazione dello stato della qualità dell'aria del 2024.

Tabella 7.4 – Caratterizzazione della qualità dell'aria dei comuni della Zona Appenninica.

		IT1216 ZON	JA APF	ENN	IINI	CA						
	Τ,			PN	I_{10}	PM _{2.5}	N	O ₂	C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	cod ISTAT	эшои	9.58 Vrea (km ²)	media	superi	media	media	superi	media	superi	superi	superi
RI	12057001	Accumoli	86,9	5	0	5	2	0	0,1	0	0	0
FR	12060001	Acquafondata	25,6	6	0	5	2	0	0,2	0	0	0
VT	12056001	Acquapendente	130,3	15	5	9	7	0	0,2	0	0	1
RM	12058001	Affile	15	9	0	8	5	0	0,2	0	0	0
RM	12058002	Agosta	9,5	12	2	10	7	0	0,2	0	0	3
FR	12060004	Alvito	52	21	13	13	6	0	0,1	0	0	3
RI	12057002	Amatrice	174,4	6	0	5	4	0	0,1	0	0	0
RM	12058006	Anticoli Corrado	16	10	0	9	6	0	0,2	0	0	5
RI	12057003	Antrodoco	64	6	0	6	5	0	0,1	0	0	1
RM	12058008	Arcinazzo Romano	28,3	9	0	7	5	0	0,1	0	0	0

Valutazione della qualità dell'aria - 2024

		IT1216 ZON	JA APF	ENI	INI	CA						
	r			PN	I_{10}	PM _{2.5}	N	O_2	C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	cod ISTAT	nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
RM	12058010	Arsoli	11,9	11	0	9	7	0	0,2	0	0	2
RI	12057004	Ascrea	14,4	7	0	6	3	0	0,2	0	0	1
FR	12060011	Atina	29,8	23	26	14	6	0	0,1	0	0	3
VT	12056003	Bagnoregio	72,6	10	0	9	5	0	0,2	0	0	0
VT	12056006	Bassano in Teverina	12,1	13	1	11	7	0	0,3	0	0	0
RM	12058012	Bellegra	18,7	13	0	11	8	0	0,2	0	0	1
FR	12060013	Belmonte Castello	14,2	17	6	9	7	0	0,1	0	0	6
RI	12057005	Belmonte in Sabina	23,6	11	5	6	6	0	0,4	0	0	1
VT	12056008	Bolsena	63,9	12	2	8	6	0	0,2	0	0	3
VT	12056009	Bomarzo	39,9	14	1	11	13	0	0,4	0	0	0
RI	12057006	Borbona	46,3	7	0	6	2	0	0,1	0	0	0
RI	12057008	Borgo Velino	17,3	8	0	7	4	0	0,1	0	0	0
RI	12057007	Borgorose	148,9	10	0	8	8	0	0,2	0	0	1
VT	12056010	Calcata	7,7	15	5	12	8	0	0,3	0	0	1
RM	12058014	Camerata Nuova	40,2	7	0	6	4	0	0,2	0	0	0
FR	12060016	Campoli Appennino	33,4	16	10	13	5	0	0,1	0	0	7
VT	12056011	Canepina	21	11	0	8	6	0	0,3	0	0	0
RI	12057009	Cantalice	37,7	18	19	13	7	0	0,4	0	0	5
RI	12057010	Cantalupo in Sabina	10,5	15	1	13	8	0	0,3	0	0	2
RM	12058017	Canterano	7,3	10	0	9	5	0	0,2	0	0	1
VT	12056013	Capodimonte	61,3	11	0	9	4	0	0,2	0	0	0
RM	12058019	Capranica Prenestina	20,2	9	0	7	5	0	0,2	0	0	1
VT	12056015	Caprarola	57,5	14	2	11	7	0	0,3	0	0	0
VT	12056016	Carbognano	17,3	16	5	11	6	0	0,2	0	0	0
FR	12060017	Casalattico	28,3	18	9	9	2	0	0,1	0	0	4
RM	12058021	Casape	5,2	9	0	7	6	0	0,2	0	0	1
RI	12057011	Casaprota	14,6	10	0	9	5	0	0,2	0	0	1
RI	12057012	Casperia	25,4	12	0	10	6	0	0,2	0	0	1
RI	12057013	Castel di Tora	15,7	7	0	6	3	0	0,1	0	0	1
RM	12058023	Castel Madama	28,4	15	0	11	15	0	0,4	0	0	4
RM	12058025	Castel San Pietro Romano	15	13	0	10	9	0	0,3	0	0	2
RI	12057015	Castel Sant'Angelo	31,3	9	0	7	4	0	0,2	0	0	4
VT	12056017	Castel Sant'Elia	24	17	9	12	9	0	0,3	0	0	0
RI	12057014	Castelnuovo di Farfa	9	12	0	10	6	0	0,2	0	0	1
VT	12056018	Castiglione in Teverina	20	12	0	10	8	0	0,3	0	0	0
VT	12056019	Celleno	24,6	12	0	9	5	0	0,3	0	0	0
VT	12056020	Cellere	37,2	10	0	8	4	0	0,2	0	0	0

		IT1216 ZON	NA APF	ENN	INI	CA						
	-			PN	I_{10}	PM _{2.5}	N	O_2	C ₆ H ₆	CO	SO_2	**O ₃
Provincia	cod ISTAT	nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
RM	12058027	Cerreto Laziale	11,7	12	0	10	6	0	0,2	0	0	2
RM	12058028	Cervara di Roma	31,7	9	1	8	4	0	0,2	0	0	1
RM	12058030	Ciciliano	18,9	12	0	10	7	0	0,2	0	0	3
RM	12058031	Cineto Romano	10,5	10	0	9	7	0	0,2	0	0	4
RI	12057016	Cittaducale	71	14	5	8	9	0	1,0	0	0	7
RI	12057017	Cittareale	59	6	0	5	2	0	0,1	0	0	0
VT	12056021	Civita Castellana	83,3	22	17	14	23	0	0,4	0	0	1
VT	12056022	Civitella d'Agliano	32,9	12	0	11	13	0	0,3	0	0	0
RM	12058033	Civitella San Paolo	20,5	14	0	12	13	0	0,3	0	0	3
RI	12057018	Collalto Sabino	22,2	7	0	6	3	0	0,2	0	0	0
RI	12057019	Colle di Tora	14,2	6	0	6	3	0	0,2	0	0	1
FR	12060029	Colle San Magno	44,6	18	7	8	5	0	0,2	0	0	3
RI	12057020	Collegiove	10,8	6	0	5	2	0	0,1	0	0	0
RI	12057021	Collevecchio	27,2	20	8	14	19	0	0,3	0	0	2
RI	12057022	Colli sul Velino	13,1	14	3	11	5	0	0,3	0	0	0
RI	12057023	Concerviano	21,5	8	0	5	3	0	0,2	0	0	1
RI	12057024	Configni	22,7	9	0	8	4	0	0,3	0	0	0
RI	12057025	Contigliano	53,5	16	14	12	8	0	0,4	0	0	0
VT	12056023	Corchiano	32,9	18	11	12	11	0	0,3	0	0	0
RI	12057026	Cottanello	36,5	9	0	8	4	0	0,2	0	0	1
VT	12056024	Fabrica di Roma	34,7	18	12	12	9	0	0,3	0	0	0
VT	12056025	Faleria	25,7	16	8	12	10	0	0,3	0	0	1
RI	12057027	Fara in Sabina	54,9	17	2	14	14	0	0,4	0	0	4
VT	12056026	Farnese	53	10	0	8	5	0	0,2	0	0	0
RI	12057028	Fiamignano	100,7	7	0	7	3	0	0,1	0	0	1
RM	12058037	Filacciano	5,7	16	3	14	17	0	0,3	0	0	3
FR	12060034	Filettino	77,7	7	0	4	2	0	0,1	0	0	0
FR	12060035	Fiuggi	33,1	20	13	12	11	0	0,2	0	0	0
RI	12057029	Forano	17,6	16	3	14	13	0	0,3	0	0	3
RI	12057030	Frasso Sabino	4,4	10	0	9	5	0	0,2	0	0	1
VT	12056027	Gallese	37,3	18	9	13	18	0	0,4	0	0	0
FR	12060040	Gallinaro	17,6	22	14	13	4	0	0,1	0	0	2
RM	12058044	Gerano	10	12	0	10	5	0	0,2	0	0	1
VT	12056028	Gradoli	37,5	11	1	8	4	0	0,2	0	0	1
VT	12056029	Graffignano	29,1	13	1	11	13	0	0,3	0	0	0
RI	12057031	Greccio	17,9	13	4	9	5	0	0,3	0	0	0
VT	12056030	Grotte di Castro	39,3	13	5	9	4	0	0,2	0	0	1

		IT1216 ZOI	NA APF	ENN	INI	CA						
	r			PN	I_{10}	PM _{2.5}	N	O_2	C_6H_6	CO	SO ₂	**O ₃
Provincia	cod ISTAT	nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
FR	12060042	Guarcino	42,3	24	25	13	15	0	0,1	0	0	1
VT	12056031	Ischia di Castro	104,7	10	0	8	6	0	0,2	0	0	0
RM	12058048	Jenne	32,1	7	0	6	3	0	0,1	0	0	0
RI	12057032	Labro	11,4	12	0	9	4	0	0,3	0	0	2
VT	12056032	Latera	22,7	10	0	8	3	0	0,2	0	0	0
RI	12057033	Leonessa	204,9	13	8	8	6	0	0,1	0	0	6
RM	12058051	Licenza	17,5	8	0	7	5	0	0,2	0	0	1
RI	12057034	Longone Sabino	34,1	8	0	6	3	0	0,2	0	0	1
VT	12056033	Lubriano	16,6	10	0	8	4	0	0,2	0	0	0
RM	12058052	Magliano Romano	21,1	14	2	12	7	0	0,3	0	0	1
RI	12057035	Magliano Sabina	43,7	23	12	15	25	0	0,4	0	0	1
RM	12058053	Mandela	13,2	12	0	10	9	0	0,3	0	0	4
RM	12058055	Marano Equo	7,6	10	0	9	5	0	0,2	0	0	2
RM	12058056	Marcellina	15,3	18	4	10	13	0	0,4	0	0	6
RI	12057036	Marcetelli	11	5	0	4	2	0	0,1	0	0	0
VT	12056034	Marta	33,3	11	0	9	5	0	0,2	0	0	0
RM	12058058	Mazzano Romano	28,9	15	6	12	9	0	0,3	0	0	1
RI	12057037	Micigliano	37,4	5	0	5	2	0	0,1	0	0	0
RI	12057038	Mompeo	10,9	10	0	9	5	0	0,2	0	0	1
RI	12057039	Montasola	12,6	9	0	7	4	0	0,2	0	0	1
RI	12057043	Monte San Giovanni in Sabina	30,7	9	0	7	4	0	0,2	0	0	0
RI	12057040	Montebuono	19,6	13	0	10	7	0	0,3	0	0	1
VT	12056036	Montefiascone	104,8	14	4	10	8	0	0,3	0	0	1
RM	12058061	Monteflavio	17,2	9	0	7	4	0	0,2	0	0	1
RI	12057041	Monteleone Sabino	18,9	10	0	8	5	0	0,2	0	0	0
RM	12058063	Montelibretti	44,1	19	5	15	17	0	0,4	0	0	7
RI	12057042	Montenero Sabino	22,6	9	0	7	4	0	0,2	0	0	1
VT	12056038	Monterosi	10,8	14	1	12	7	0	0,2	0	0	0
RI	12057044	Montopoli di Sabina	37,6	16	2	14	17	0	0,4	0	0	3
RM	12058066	Montorio Romano	23,8	12	0	10	7	0	0,2	0	0	2
RM	12058067	Moricone	20,1	16	1	13	11	0	0,3	0	0	5
RI	12057045	Morro Reatino	15,8	14	6	10	5	0	0,3	0	0	12
RM	12058069	Nazzano	12,2	16	2	14	21	0	0,4	0	0	3
VT	12056039	Nepi	84	16	6	12	10	0	0,3	0	0	0
RM	12058071	Nerola	18,6	13	0	11	8	0	0,3	0	0	2
RI	12057046	Nespolo	8,7	6	0	6	2	0	0,1	0	0	0
VT	12056040	Onano	24,6	12	5	8	3	0	0,2	0	0	0

		IT1216 ZON	NA APP	ENN	INI	CA						
	r			PN	I_{10}	PM _{2.5}	N	O_2	C_6H_6	CO	SO ₂	**O ₃
Provincia	cod ISTAT	nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
VT	12056042	Orte	70,2	19	4	14	25	0	0,4	0	0	1
RI	12057047	Orvinio	24,6	7	0	6	4	0	0,2	0	0	0
RI	12057048	Paganico Sabino	9,2	6	0	5	2	0	0,1	0	0	0
RM	12058075	Palombara Sabina	75,5	19	6	15	16	0	0,4	0	0	11
RM	12058076	Percile	17,6	7	0	6	4	0	0,2	0	0	2
RI	12057049	Pescorocchiano	94,6	8	0	7	3	0	0,2	0	0	1
FR	12060049	Pescosolido	44,6	18	15	15	6	0	0,2	0	0	14
RI	12057050	Petrella Salto	102,2	7	0	6	3	0	0,2	0	0	3
VT	12056043	Piansano	26,5	10	0	9	5	0	0,2	0	0	0
FR	12060050	Picinisco	62	21	10	12	5	0	0,1	0	0	1
RM	12058077	Pisoniano	13,2	10	0	8	4	0	0,2	0	0	0
RI	12057051	Poggio Bustone	22,3	18	21	14	6	0	0,3	0	0	9
RI	12057052	Poggio Catino	15	15	1	13	7	0	0,3	0	0	2
RI	12057053	Poggio Mirteto	26,5	16	3	14	12	0	0,3	0	0	3
RI	12057054	Poggio Moiano	26,8	10	0	9	6	0	0,2	0	0	1
RI	12057055	Poggio Nativo	16,4	11	0	10	6	0	0,2	0	0	1
RI	12057056	Poggio San Lorenzo	8,7	9	0	8	5	0	0,2	0	0	0
RM	12058078	Poli	21,4	12	0	10	8	0	0,3	0	0	5
RM	12058080	Ponzano Romano	19,2	18	5	14	23	0	0,4	0	0	4
RI	12057057	Posta	66,2	7	1	6	2	0	0,1	0	0	2
RI	12057058	Pozzaglia Sabina	25,2	7	0	6	3	0	0,1	0	0	0
VT	12056044	Proceno	41,9	13	5	8	3	0	0,2	0	0	0
RI	12057059	Rieti	206,5	20	22	14	16	0	0,5	0	0	5
RM	12058082	Rignano Flaminio	38,9	15	4	13	12	0	0,3	0	0	2
RM	12058083	Riofreddo	12,2	9	0	8	6	0	0,2	0	0	3
RI	12057060	Rivodutri	26,9	18	13	14	7	0	0,3	0	0	10
RM	12058084	Rocca Canterano	15,8	9	0	8	4	0	0,2	0	0	1
RM	12058085	Rocca di Cave	11,1	12	0	9	7	0	0,2	0	0	1
RM	12058089	Rocca Santo Stefano	9,7	11	0	9	5	0	0,2	0	0	0
RI	12057062	Rocca Sinibalda	49,4	8	0	7	3	0	0,2	0	0	1
RM	12058087	Roccagiovine	8,6	8	0	7	4	0	0,2	0	0	0
RI	12057061	Roccantica	16,7	11	0	10	5	0	0,2	0	0	1
RM	12058090	Roiate	10,3	11	0	9	5	0	0,2	0	0	0
VT	12056045	Ronciglione	52,3	15	4	12	8	0	0,2	0	0	0
RM	12058092	Roviano	8,3	11	0	9	7	0	0,2	0	0	4
RI	12057063	Salisano	17,5	9	0	8	5	0	0,2	0	0	1
RM	12058094	Sambuci	8,2	11	0	8	7	0	0,2	0	0	4

		IT1216 ZON	NA APF	ENN	IIII	CA						
	r			PN	I_{10}	PM _{2.5}	N	O_2	C_6H_6	CO	SO ₂	**O ₃
Provincia	cod ISTAT	nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
FR	12060061	San Biagio Saracinisco	31,1	7	0	5	2	0	0,1	0	0	0
FR	12060062	San Donato Val di Comino	35,7	18	10	11	5	0	0,1	0	0	1
RM	12058095	San Gregorio da Sassola	35,2	15	0	11	12	0	0,3	0	0	8
VT	12056047	San Lorenzo Nuovo	28	14	5	9	4	0	0,2	0	0	2
RM	12058096	San Polo dei Cavalieri	42,6	18	1	9	12	0	0,4	0	0	4
RM	12058100	San Vito Romano	12,7	13	1	11	7	0	0,2	0	0	1
RM	12058099	Sant'Oreste	43,5	17	5	13	20	0	0,3	0	0	2
RM	12058101	Saracinesco	11	10	0	8	8	0	0,2	0	0	5
RI	12057064	Scandriglia	63,1	10	0	9	6	0	0,2	0	0	2
RI	12057065	Selci	7,8	14	1	13	8	0	0,3	0	0	2
FR	12060072	Settefrati	50,6	21	11	12	4	0	0,1	0	0	1
VT	12056048	Soriano nel Cimino	78,6	14	4	11	10	0	0,4	0	0	0
RI	12057066	Stimigliano	11,4	17	5	14	14	0	0,3	0	0	3
RM	12058103	Subiaco	63,4	13	7	11	12	0	0,2	0	0	0
RI	12057067	Tarano	20,1	14	0	12	9	0	0,3	0	0	2
FR	12060077	Terelle	31,7	17	7	9	7	0	0,2	0	0	5
RI	12057068	Toffia	11,2	11	0	10	6	0	0,2	0	0	1
FR	12060078	Torre Cajetani	11,6	19	9	11	12	0	0,2	0	0	0
RI	12057070	Torri in Sabina	26,2	13	0	11	7	0	0,2	0	0	2
RI	12057069	Torricella in Sabina	25,8	9	0	7	4	0	0,2	0	0	1
RM	12058106	Torrita Tiberina	10,8	15	2	13	16	0	0,3	0	0	4
FR	12060080	Trevi nel Lazio	54,5	13	4	9	5	0	0,1	0	0	0
FR	12060081	Trivigliano	12,7	22	16	13	15	0	0,2	0	0	1
RI	12057071	Turania	8,6	7	0	6	3	0	0,2	0	0	0
RI	12057072	Vacone	9,1	9	0	8	4	0	0,2	0	0	1
VT	12056053	Valentano	43,3	10	0	8	5	0	0,2	0	0	0
RM	12058108	Vallepietra	51,5	7	0	5	3	0	0,1	0	0	0
VT	12056054	Vallerano	15,5	12	0	10	7	0	0,3	0	0	0
FR	12060084	Vallerotonda	59,7	11	4	8	5	0	0,1	0	0	2
RM	12058109	Vallinfreda	16,8	7	0	6	4	0	0,2	0	0	1
RI	12057073	Varco Sabino	24,6	5	0	5	2	0	0,1	0	0	1
VT	12056055	Vasanello	28,6	13	2	11	9	0	0,3	0	0	0
RM	12058112	Vicovaro	36,1	14	0	11	13	0	0,3	0	0	5
VT	12056058	Vignanello	20,5	15	6	12	7	0	0,3	0	0	0
FR	12060088	Villa Latina	17	20	7	11	4	0	0,1	0	0	1
VT	12056059	Viterbo	406,3	18	6	11	20	0	0,7	0	0	3
FR	12060091	Viticuso	21,1	6	0	5	2	0	0,2	0	0	0

		IT1216 ZON	IA APP	ENI	INI	CA						
	T_			PN	I_{10}	PM _{2.5}	N	O ₂	C_6H_6	CO	SO_2	**O ₃
Provincia	TATSI boɔ	emou	Area (km²)	media	superi	media	media	iradns	media	ingus	superi	superi
VT	12056060	Vitorchiano	29,8	16	5	11	11	0	0,5	0	0	1
RM	12058113	Vivaro Romano	12,2	7	0	6	4	0	0,2	0	0	0

^{(**) -}calcolato come media su 3 anni (2022-2024).

Nella Zona Appenninica non si rilevano superamenti dei valori limite degli inquinanti normati dal D.lgs. n. 155/2010.

7.6.4 Zona Litoranea

Nella tabella seguente è riportata la caratterizzazione di ogni comune della Zona Litoranea, in base alla valutazione dello stato della qualità dell'aria del 2024 (i superamenti dei valori limite sono riportati in rosso).

Tabella 7.5 - Caratterizzazione della qualità dell'aria dei comuni nella Zona Litoranea.

		IT121	8 ZON	JA LIT	TORA:	NEA						
				PN	I_{10}	PM _{2.5}	N	O_2	C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	cod ISTAT	nome	Area (km^2)	media	ınədns	media	media	superi	media	superi	superi	superi
RM	12058004	Allumiere	97,9	17	7	10	7	0	0	0	0	22
RM	12058007	Anzio	43,5	19	5	14	13	0	0	0	0	11
LT	12059001	Aprilia	177,7	24	14	15	22	0	0	0	0	1
RM	12058117	Ardea	50,9	20	6	14	14	0	0	0	0	9
VT	12056002	Arlena di Castro	22,3	10	0	8	4	0	0	0	0	0
RM	12058011	Artena	54,2	30	44	19	20	0	0	0	0	2
VT	12056004	Barbarano Romano	37,3	11	1	9	4	0	0	0	0	1
VT	12056005	Bassano Romano	37,4	11	1	10	7	0	0	0	0	0
LT	12059002	Bassiano	31,6	12	3	7	15	0	0	0	0	1
VT	12056007	Blera	92,8	16	6	9	6	0	0	0	0	3
RM	12058013	Bracciano	142,4	14	3	11	11	0	0	0	0	2
LT	12059003	Campodimele	38,2	19	6	7	3	0	0	0	0	0
RM	12058016	Canale Monterano	36,8	12	0	10	6	0	0	0	0	2
VT	12056012	Canino	123,5	11	0	9	9	0	0	0	0	0
VT	12056014	Capranica	40,7	12	0	10	8	0	0	0	0	0
LT	12059004	Castelforte	29,9	11	1	9	5	0	0	0	0	0

		IT12	18 ZON	JA LIT	ΓORA	NEA						
				PN	M_{10}	PM _{2.5}	N	O_2	C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	cod ISTAT	nome	Area (km²)	media	superi	media	media	superi	media	superi	superi	superi
RM	12058029	Cerveteri	125,4	18	7	12	14	0	0	0	0	12
LT	12059005	Cisterna di Latina	142,8	24	21	15	22	0	0	0	0	4
RM	12058032	Civitavecchia	72,3	23	9	9	23	0	1	0	0	13
LT	12059006	Cori	86	23	24	16	13	0	0	0	0	2
LT	12059007	Fondi	142,3	28	19	12	17	0	0	0	0	0
LT	12059008	Formia	73,5	26	14	11	26	0	0	0	0	2
LT	12059009	Gaeta	28,5	26	16	10	24	0	0	0	0	4
RM	12058043	Genzano di Roma	18,3	22	11	15	14	0	0	0	0	0
LT	12059010	Itri	101,2	21	7	9	15	0	0	0	0	1
RM	12058116	Ladispoli	26	18	8	12	15	0	0	0	0	22
RM	12058050	Lanuvio	44	23	10	15	14	0	0	0	0	0
RM	12058115	Lariano	27	26	38	19	13	0	0	0	0	1
LT	12059011	Latina	277,8	25	14	14	30	0	1	0	0	47
LT	12059012	Lenola	45,7	24	10	10	6	0	0	0	0	0
LT	12059013	Maenza	42,6	17	2	12	9	0	0	0	0	0
RM	12058054	Manziana	23,8	13	0	10	7	0	0	0	0	1
LT	12059014	Minturno	42,1	17	6	13	13	0	0	0	0	2
VT	12056035	Montalto di Castro	189,5	12	0	9	8	0	0	0	0	14
VT	12056037	Monte Romano	86	18	6	10	8	0	0	0	0	1
LT	12059015	Monte San Biagio	66,4	22	17	12	6	0	0	0	0	0
RM	12058070	Nemi	7,2	15	4	10	10	0	0	0	0	0
RM	12058072	Nettuno	71,8	19	6	13	18	0	0	0	0	32
LT	12059016	Norma	30,8	15	4	7	14	0	0	0	0	2
VT	12056041	Oriolo Romano	19,2	12	0	10	5	0	0	0	0	1
RM	12058079	Pomezia	110,9	19	5	14	20	0	0	0	0	10
LT	12059017	Pontinia	112,2	19	5	15	13	0	0	0	0	3
LT	12059019	Priverno	56,8	21	14	14	12	0	0	0	0	0
LT	12059020	Prossedi	36,1	21	8	12	10	0	1	0	0	0
LT	12059022	Rocca Massima	18,1	18	6	11	7	0	0	0	0	1
LT	12059021	Roccagorga	24	16	2	12	8	0	0	0	0	0
LT	12059023	Roccasecca dei Volsci	23,6	19	6	11	7	0	0	0	0	0
LT	12059024	Sabaudia	144,3	17	2	13	14	0	0	0	0	40
LT	12059025	San Felice Circeo	32,1	16	1	12	7	0	0	0	0	6
RM	12058097	Santa Marinella	49,3	22	9	9	14	0	0	0	0	14
LT	12059026	Santi Cosma e Damiano	31,6	17	13	14	7	0	0	0	0	0
LT	12059027	Sermoneta	44,9	19	7	11	27	0	1	0	0	4
LT	12059028	Sezze	101,4	19	10	15	17	0	0	0	0	2
Valutaz	ione della qualit	à dell'aria - 2024									Dagi	na 74 di 79

IT1218 ZONA LITORANEA												
				PM_{10}		PM _{2.5}	NO_2		C ₆ H ₆	CO	SO ₂	**O ₃
Provincia	TATSI boo	əmou	$Area (km^2)$	media	superi	media	media	superi	media	ınədns	nadns	superi
LT	12059029	Sonnino	63,8	22	9	11	9	0	0	0	0	0
LT	12059030	Sperlonga	18	18	4	9	9	0	0	0	0	1
LT	12059031	Spigno Saturnia	38,7	15	3	11	11	0	0	0	0	1
VT	12056049	Sutri	60,9	14	1	11	8	0	0	0	0	0
VT	12056050	Tarquinia	279	16	6	9	11	0	0	0	0	33
LT	12059032	Terracina	136,4	18	4	12	16	0	0	0	0	1
VT	12056051	Tessennano	14,7	10	0	8	4	0	0	0	0	0
RM	12058105	Tolfa	168	20	8	10	10	0	0	0	0	21
RM	12058107	Trevignano Romano	39,4	13	0	11	7	0	0	0	0	1
VT	12056052	Tuscania	208	13	4	10	10	0	0	0	0	0
VT	12056056	Vejano	44,3	13	4	10	5	0	0	0	0	2
RM	12058111	Velletri	129,6	25	32	18	18	0	0	0	0	1
VT	12056057	Vetralla	113,1	16	6	11	8	0	0	0	0	2
VT	12056046	Villa San Giovanni in Tuscia	5,3	13	1	9	5	0	0	0	0	0

^{(**) -}calcolato come media su 3 anni (2022-2024).

Nella Zona Litoranea le criticità più significative si riscontrano relativamente al PM₁₀ e O₃. Nello specifico:

- il numero massimo di superamenti della concentrazione di PM₁₀ è maggiore del limite consentito dalla norma (35 superamenti annui) ad Artena e a Lariano (44 e 38 superamenti, rispettivamente);
- il numero di superamenti dell'O₃, come massimo della media mobile di 8 ore dei 120 μg/m³ e mediato sul triennio 2022-2024, eccede il valore consentito dalla norma (25 superamenti annui) a Latina, a Nettuno, a Sabaudia e a Tarquinia (47, 32, 40 e 33 superamenti, rispettivamente).

8. Conclusioni

Il presente documento riporta la valutazione annuale della qualità dell'aria del 2024, eseguita secondo quanto previsto dal D.lgs. n. 155/2010, combinando i diversi strumenti previsti dalla norma.

In particolare, la valutazione della qualità dell'aria sul territorio regionale è il risultato della combinazione dei campi di concentrazione forniti dal sistema modellistico operativo presso il Centro Regionale della Qualità dell'Aria dell'ARPA Lazio e le misure fornite dalla rete di monitoraggio mediante tecniche di *data fusion* (assimilazione a posteriori).

Il sistema modellistico utilizzato è un sistema di tipo integrato, articolato in moduli specialistici per il trattamento delle diverse informazioni necessarie alla valutazione della qualità dell'aria (caratteristiche del sito, orografia e uso del suolo, meteorologia, emissioni, dispersione, deposizione e chimica dell'atmosfera) e di post-processori finalizzati sia alla visualizzazione grafica dei campi 2D e 3D utilizzati e elaborati dal sistema modellistico, sia alla verifica dei risultati prodotti mediante il confronto con i dati misurati.

L'assimilazione è stata effettuata a partire dai dati orari di concentrazioni dei vari inquinanti monitorati in ogni stazione operativa con una copertura dei dati di almeno il 75%.

Inoltre, ai fini dell'assimilazione dei dati di PM₁₀, le misure dalla rete fissa sono state integrate con le misure condotte con i laboratori mobili o con strumentazione da campo, durante le specifiche campagne di monitoraggio, ricostruendo statisticamente le serie giornaliere delle concentrazioni (misura di stima obiettiva), mediante uno stimatore statistico "Best Linear Unbiased Estimator".

A partire dalla distribuzione spaziale della concentrazione degli inquinanti su tutto il territorio regionale, a ogni comune è stato associato lo stato della qualità dell'aria secondo la metodologia descritta nel capitolo 7.

Per quanto riguarda le emissioni utilizzate nel sistema modellistico, è necessario sottolineare che a partire dal 2020 è stato implementato l'aggiornamento dell'inventario delle emissioni regionali nel modello che, alla luce delle informazioni acquisite localmente e in linea con quanto calcolato dall'ISPRA a livello nazionale, ha messo in evidenza un significativo incremento delle emissioni dovute al riscaldamento domestico, rispetto ai dati utilizzati negli anni antecedenti il 2020.

La valutazione della qualità dell'aria è stata effettuata su base comunale ma, in conformità a quanto previsto dalla norma, le misure di contrasto all'inquinamento devono essere definite dalla Regione per le aree di superamento all'interno delle zone.

Nella tabella seguente (Tabella 8.1) viene riportata una sintesi della valutazione della qualità dell'aria 2024 nel Lazio.

Tabella 8.1 - Sintesi della valutazione della qualità dell'aria del 2024.

QUALITÀ DELL'ARIA NEL LAZIO						
Inquinante	Qualità dell'aria					
Benzene (C ₆ H ₆)	Nessun comune della regione Lazio supera il limite di concentrazione media annuale.					
CO	Nessun comune della regione Lazio è in superamento.					
SO ₂	Nessun comune della regione Lazio è in superamento.					
NO ₂	La concentrazione media annua è superiore al valore limite di 40 μg/m³ nell'Agglomerato di Roma (1 comune: Roma).					
PM_{10}	Nessun comune della regione Lazio supera il limite di concentrazione media annuale. Il numero di superamenti del valore limite di concentrazione giornaliera eccede il massimo consentito nella Zona Valle del Sacco (44 comuni) e nella Zona Litoranea (2 comuni).					
PM _{2.5}	Nessun comune della regione Lazio supera il limite di concentrazione media annuale.					
O ₃	Il superamento del valore obiettivo si rileva in 3 comuni dell'Agglomerato di Roma (Fiumicino, Guidonia Montecelio e Roma), in 2 comuni della Zona Valle del Sacco (Monte Compatri e Sora) e in 4 comuni della Zona Litoranea (Latina, Nettuno, Sabaudia e Tarquinia). Si registrano superamenti dell'AOT40 esclusivamente in Zona Litoranea (presso la centralina fissa Allumiere Aldo Moro).					
Benzo(a)pirene	Si rileva una concentrazione media annua superiore al valore limite di 1 ng/m³ nella Zona Valle del Sacco (presso la centralina Frosinone Scalo).					
Metalli	Non si rilevano superamenti dei limiti normativi.					

Nel 2024, a livello regionale si confermano limitate criticità relative alla concentrazione media annua di NO₂, che eccede i limiti a Roma.

Rispetto all'anno precedente, la concentrazione media di PM₁₀ è rimasta pressoché costante in tutte le zone della regione, sebbene il numero dei superamenti del valore limite giornaliero di PM₁₀ ecceda il massimo in un numero maggiore di comuni rispetto al numero dei comuni in superamento nel 2023. Tuttavia, è opportuno sottolineare che l'aumento non è significativo ed è pari a 3. Infine, rispetto alle valutazioni della qualità dell'aria degli anni precedenti, non si riscontrano criticità legate alla concentrazione media annua di PM_{2.5}.

Il valore obiettivo dell'O₃ è stato superato nell'Agglomerato di Roma, nella Zona Valle del Sacco e nella Zona Litoranea e comunque rappresenta un'ulteriore conferma delle criticità legate alle anomale elevate temperature rilevate nel 2024.

Per quanto riguarda la meteorologia, il trend di aumento della temperatura media prosegue anche nel 2024, confermando un incremento di 1,0°C negli ultimi 11 anni.

Relativamente a PM₁₀, PM_{2.5} e NO₂, nella tabella seguente (Tabella 8.2) viene mostrato l'andamento del numero dei comuni in superamento dal 2020 al 2024, le relative aree in superamento e la popolazione esposta.

Tabella 8.2 - Numero dei comuni in superamento dal 2020 al 2024 e relative aree di superamento (km²) e popolazione esposta.

		Media annua PM ₁₀	Area superamento (km²)	Popolazione esposta	N. sup. giornalieri PM ₁₀	Area superamento (km²)	Popolazione esposta
	2020	11	20	5.965	99	979	380.880
NT	2021	7	19	5.862	62	351	103.001
N. comuni in superamento	2022	5	17	5.038	75	314	106.881
superamento	2023	0	0	0	43	651	174.328
	2024	0	0	0	46	678	164.769

		Media annua PM _{2.5}	Area superamento (km²)	Popolazione esposta
	2020	24	67	21.411
3 . T	2021	26	67	19.201
N. comuni in	2022	30	84	23.087
superamento	2023	0	0	0
	2024	0	0	0

		Media annua NO ₂	Area superamento (km²)	Popolazione esposta
	2020	2	17	35.877
T ··	2021	2	16	21.947
N. comuni in superamento	2022	2	8	6.536
superamento	2023	1	5	10.692
	2024	1	3	6.404

Riguardo i superamenti dei valori limite relativi al PM₁₀, il trend positivo osservato nel 2023 è stato confermato anche nel 2024. Nessun comune ha superato il valore limite di concentrazione media annua di PM₁₀ per il secondo anno consecutivo. Tuttavia, il numero di comuni che hanno superato il limite giornaliero è leggermente aumentato, passando da 43 a 46, sebbene l'area coinvolta e la popolazione esposta risultino sostanzialmente stabili.

Per quanto riguarda il PM_{2.5}, la situazione appare più favorevole: nel 2023 e nel 2024 non si registrano superamenti del valore limite annuale.

Il quadro relativo al biossido di azoto (NO2) resta pressoché stabile, con il solo comune di Roma in superamento in tutta la regione. Anche se l'area e la popolazione esposta risultano ridotte rispetto agli anni precedenti, ciò non deve indurre a sottovalutare la persistenza di criticità, soprattutto nei contesti urbani legati al traffico veicolare. Tale inquinante, infatti, è fortemente legato alla mobilità urbana e all'uso di combustibili fossili.

Le tendenze osservate nel 2024 non risultano in grado di assicurare il raggiungimento degli obiettivi definiti della nuova Direttiva europea sulla qualità dell'aria (Direttiva UE 2024/2881 del Parlamento Europeo e del Consiglio del 23 ottobre 2024 relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa). L'approccio adottato prevede un progressivo adeguamento degli standard di qualità dell'aria dell'UE alle raccomandazioni dell'OMS entro il 2030, con un pieno allineamento entro il 2050, puntando all'obiettivo "zero pollution".

Di conseguenza, le criticità attualmente limitate ad alcune zone interesseranno larga parte del territorio regionale, in particolare durante i periodi più critici dell'anno dal punto di vista della qualità dell'aria. L'analisi dei dati presentati in questo documento, unitamente all'aggiornamenti dei limiti stabiliti dalla nuova Direttiva, mettono in evidenza l'urgenza di interventi per contrastare il deterioramento della qualità dell'aria nel Lazio, con particolare attenzione all'Agglomerato di Roma e alla Zona Valle del Sacco, già interessate da alcune significative criticità.

I fattori che incidono sulla qualità dell'aria sono molteplici e richiedono un'attività trasversale e razionale indirizzata alla comprensione e all'individuazione dei problemi e alla loro soluzione attraverso interventi specifici, inquadrati in una strategia unica. È necessaria una forte collaborazione tra le diverse amministrazioni per raggiungere gli obiettivi stabiliti dalla direttiva europea assicurando così un'aria più salubre ai cittadini della regione.